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The Monte Carlo method applied to the fractional SIR model 

O Método de Monte Carlo aplicado ao modelo SIR fracionário 

 
ABSTRACT 

 

In the present work, we propose an algorithm based on the Monte Carlo Method for 
solving fractional dynamical systems. As an example of application, we use the 
proposed method in the fractional SIR model. In order to investigate the statistical 
convergence of the method, we compare the results obtained with the solution obtained 
by the Finite Differences Method.  
 

Keywords: Monte Carlo method. Fractional Calculus. SIR.  
 

 

RESUMO 

 

No presente trabalho propomos um algoritmo baseado no Método de Monte Carlo para 
a resolução de sistemas dinâmicos fracionários. Como exemplo de aplicação, 
utilizamos o método proposto no modelo SIR fracionário. Para investigar a convergência 
estatística do método, comparamos os resultados obtidos com a solução obtida pelo 
Método das Diferenças Finitas.  
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Luverci do Nascimento Ferreira1, Matheus Jatkoske Lazo2 

1 Msc in Mathematics. Institute of 
Mathematics, Statistics and 
Physics - IMEF.  

Federal University of Rio Grande 
(FURG). 

E-mail: luverci@gmail.com 

ORCID: https://orcid.org/0000-
0002-0662-9112 

2 PhD in Physics. Institute of 
Mathematics, Statistics and 
Physics - IMEF.  

Federal University of Rio Grande 
(FURG). 

E-mail: matheusjlazo@gmail.com 

ORCID: https://orcid.org/0000-
0001-9741-9411 

 

 



DOI 10.18605/2175-7275/cereus.v15n1p92-104 
Revista Cereus 
2023 Vol. 15 N. 1 

FERREIRA, L. N.; LAZO, M. J. 
The Monte Carlo method applied to the fractional SIR model. 

 

 

93 

1. INTRODUCTION 
 

When Leibniz proposed a derivation of the order  in a letter to l’Hôpital in 1695, the 

study of fractional calculus began (see (OLDHAM and SPANIER, 1974; SAMKO et al., 1993) 

for a historical review). Currently, all generalizations of ordinary calculus for derivatives and 

integrals of non-integer order are called fractional calculus. Other great mathematicians in 

history have also contributed to the development of fractional calculus, including names 

such as Euler, Laplace, Liouville, Grunwald, Letnikov, Riemann, and many others. Although 

almost as old as the usual Calculus of derivatives and integrals of integers, fractional 

calculus has attracted greater attention only in recent decades because of its applications 

in various fields of science and engineering and in the solution and study of complex 

systems. according to (SABATIER et al., 2007) and (Hilfer 2000). Fractional derivatives are, 

in general, nonlocal operators. Consequently, the complex systems in which we use 

Fractional Calculus are systems with nonlocal behavior or with memory-dependent 

dynamics. 

Applications include several areas of science and engineering, including fluid flow, 

viscous media, rheology, diffusive transport, electrical networks, electromagnetic theory, 

field theory, probability, etc., according to (SABATIER et al, 2007; HILFER, 2000; KILBAS, 

2006). In this sense, the construction of efficient methods for solving differential equations, 

especially nonlinear cases, is a great challenge for mathematical modeling, especially when 

working with fractional calculus, since there are still few theories of numerical and analytical 

solutions. With the aim of overcoming these difficulties and obtaining a numerical method 

that can be used to solve fractional differential equations with different formulations of 

derivatives, we propose in the present work the construction of an algorithm based on the 

Monte Carlo method (MCM) for systems of ordinary fractional differential equations. It is 

important to point out that the use of MCM in solving ordinary differential equations (with 

whole-order derivatives of integer order) is a topic that, according to (KALOS and 

WHITLOCK, 2009), is very little studied in the literature. The reason it is rarely used is that 

the finite difference method (FDM) and its variants generally have a lower computational 

cost than MCM for well-behaved ordinary differential equations, as described in (AKHTAR 

et al., 2015). However, MCM is traditionally used to solve partial differential equations and 

integral equations, where it has several advantages over other methods when the problem 

boundary is very complicated, as (AKHTAR et al., 2015) and (KALOS and WHITLOCK, 

2009). In this context, and taking into account that fractional differential equations are 
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actually integral equations, it is curious to observe that MCM is still not very little studied in 

the context of fractional calculus, as pointed out by (FERREIRA and LAZO, 2022). 

With this in mind, the main goal of this work is to show that MCM can be used to solve 

systems of fractional differential equations, even when the integrands of these equations 

are singular. The algorithm proposed in this paper for solving systems of fractional 

differential equations is adapted from the recent work of (FERREIRA and LAZO, 2022), who 

proposed an MCM for solving ordinary fractional differential equations according to the 

formulation of Caputo and Riemann-Liouville. 

As an application example, in this paper, we apply the proposed method to a model 

that is already widely used in the literature, namely the fractional SIR model. The SIR model 

and its various generalizations are widely used in systems modeling aimed at understanding 

the dynamics of a particular disease in a population. As a recent application example, we 

can cite the modeling of the COVID -19 pandemic to explain the spread and define 

vaccination strategies, as we did in (BARROS et al., 2021) and (TAVARES and LAZO, 

2022). To analyze the statistical convergence of the proposed MCM, we compare the results 

found with the solution of the FDM variant used in (TAVARES and LAZO, 2022). 

 
 
2. PRELIMINARY 

 

In this section, we present some definitions and basic results of Caputo's fractional 

calculus, the Monte Carlo method, and the fractional model SIR, which will be used 

throughout the article. 

 

2.1 Fractional calculus 

 

A brief introduction to the mathematical theory of fractional calculus is presented with 

the definition of fractional integral proposed by Riemann-Liouville (RL) and the most famous 

definitions of fractional calculus used in this article. 

 

Definition 2.11 (Riemann-Liouville Fractional Integral) 

Let    be the operator  which in is given by  is given by 

  (1) 
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called the left-hand Riemann-Liouville fractional integral, where   is the gamma function 

and    with  . 

For  integer, the fractional integral of RL (1) coincides with the usual Riemann integral 

repeated  times, according to (DIETHELM 2004).   It follows from the definition 2.11 that 

the integral of RL exists for any integrable function  if . Moreover, it is possible to 

prove the existence of the integral of RL (1) for  in  even if   , according 

to (DIETHELM 2004). 

The fractional integral of RL (1) plays a central role in defining Caputo’s fractional 

derivatives. Before we define Caputo’s derivative, it is important to mention that for positive 

integers  the identity  holds, where  is a derivative  of 

order . By reversing the order between integral and derivative in this relation and replacing 

the integer  by a positive real value , we obtain Caputo’s definition of the derivative (see 

(DIETHELM 2004) for more details). 

 

Definition 2.12 (Caputo's fractional derivative) 

The left fractional derivative of Caputo of order  is defined by 

 with  ,  that is: 

  (2) 

where   and . 

An important consequence of the definition 2.12 is that Caputo's fractional derivatives are 

non-local operators. These left derivatives depend on the values of the left function of  , 

i.e., . On the other hand, it is important to note that when   an integer, 

Caputo's fractional derivatives reduce to integer derivatives  according to (DIETHELM 

2004). 

Finally, the RL integrals and the fractional derivatives of Caputo satisfy the following 

fractional generalization of the fundamental theorem of the infinitesimal calculus: 

 

Theorem 2.13 (Caputo's Fundamental Theorem of Calculus) 

Let , and let  be a differentiable function on . The following equality is 

satisfied: 

  ( 3) 

The proof of the theorem 2.13 can be read for example in (DIETHELM 2004). 
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 2.2 Monte Carlo method 

 

 The Monte Carlo Method (MCM) is a powerful tool for solving many problems in 

physics, biology, engineering, finance, and other fields (see (MORDECHAI, 2011) for an 

overview). According to (MORDECHAI, 2011), its origin dates back to the pioneering work 

of Comte de Buffon, who in 1777 proposed a statistical method for calculating the value of 

the number  based on the throwing of a needle. The MCM became popular during World 

War II when it was used to design the atomic bomb, as (MORDECHAI, 2011). Currently, the 

MCM represents a large class of statistical methods that use random number sampling to 

obtain numerical solutions to various types of problems. 

One of the simplest and most interesting applications of MCM is the computation of , as 

shown in (WILLIAMSON, 2013). 

Another important application is the computation of definite integrals. A simple MCM 

for computing integrals involves applying the mean value theorem for integrals. Let   be 

a Riemann integrable function on the interval . Then let 

  (4) 

where  is the average value of the function in . At this point, a sample of random 

numbers can be used to approximate   . Given a set of  uniformly distributed random 

numbers ( ) in , we obtain an approximation   for  by simply 

computing  for each random number selected. We have: 

  (5) 

where  statistically converges to   in the limit  (see (DUNN and SHULTIS, 

2022)), i.e. . Therefore, (5) gives us an approximation to the integral (4): 

  (6) 

which statistically converges against the exact value of the integral when  . The 

variance  for , according to (DUNN and SHULTIS, 2022), is given by: 

  (7) 

and the standard error  is: 
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  (8) 

The approximation (6) yields a result for the integral that differs from the exact value by up 

to one standard error with probability  (and differs from the exact value by up to two 

standard errors with probability ). Since the estimated error is proportional to the 

variance and inversely proportional to the square root of , there are two ways to reduce 

the error. The first is to increase  and the second is to decrease the variance using 

random numbers ( ) that are not uniformly distributed in  , as in (KALOS and 

WHITLOCK, 2009; DUNN and SHULTIS, 2022; NIEDERREITER, 1992). 

On the other hand, if  diverges, the convergence will be slower than for  (8) 

(NIEDERREITER, 1992). Finally, it is important to note that MCM converges for fractional 

derivatives and integrals, since the Riemann-Liouville fractional calculus is defined for 

 functions and the Caputo derivatives are defined for differentiable functions. 

 

           2.3 Fractional SIR model 
 
     With the work of (KERMACK and MCKENDRICK, 1927) began the study of 

epidemiological models known as SIR model. The model they proposed describes the 

spread of infectious diseases in a population divided into subgroups of susceptible 

individuals (with a proportion of  ), infected (with a proportion of  ), and 

recovered (with a proportion of ), with the dynamics of each of these groups 

described by an ordinary differential equation (ODE). In (TAVARES and LAZO, 2022) we 

analyzed the fractional model SIR (Susceptible-Infectious-Recovered) with two interacting 

populations, in this work we will analyze the case of only one population. The model we will 

analyze is given by: 

  (9) 

where   is the order of the derivative,  is the fractional transmission rate of the 

disease (proportional to the average contact rate within the population and within the 

population),  is the fractional reciprocal of the mean infection period. It is also assumed that 

the fractional death rate  is equal to the birth rate, so that the total number  of the 

population is constant during the disease. Therefore,  must be equal to . 

Regarding the size of the parameters in the model, it is also important to note that since , 
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, and  are dimensionless, the fractional derivative operator  has the time   

(as the integer derivative  has time ), the fractional rates ,  and  must have 

time  . 

The equilibrium points  of the system (9), i.e. ,  and 

considering  are given by (see (TAVARES and LAZO, 2022)): 

 

Where    is the infection-free break-even point and   is the endemic break-even point. 

 
3. RESULTS 

 

In this section, an MCM is proposed to obtain the numerical solution of the system (9) 

considering the Caputo derivatives. 

The first step to obtain the solution of the system (9) is to use Caputo's Fundamental 

Theorem of Infinitesimal Calculus (2.13). Thus, assuming that  and  are 

differentiable in the domain, and integrating both sides of (9) with a fractional integral of RL 

(1) given by  , we obtain: 

  (10) 

The second step is to use the MCM to obtain the solution of the integrals in (9). 

However, since  , and  are not known, MCM cannot be directly applied to the 

computation of these integrals. Therefore, we first define a discretization of these functions. 

For a positive integer  , we have  ( ), where   and  

. Let then  (where  represents each of the functions   and  ), the 

discretization of the functions is defined by: 

  (11) 

Since it was assumed that  is differentiable, we have . 

Therefore, the discretized function  is a good approximation to the function  for a 

sufficiently large  . You can then determine the values  from the following recursion 

relation: 
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  ( 12) 

Finally, if we compute the integrals in (12) using the MCM (as in (6)), we obtain the 

approximate solution of the fractional system SIR (9): 

 

   

  (13) 

 

where  is a positive integer and ( ) are random numbers uniformly distributed in 

. Finally, it is important to emphasize that the proposed MCM can also be used to obtain 

the solution of the SIR system with integer derivative by substituting   into (13). 

 

 

4. DISCUSSION 
 

In this section, we will obtain the numerical solution of the fractional SIR model (9) by 

the proposed MCM, for this purpose we implement the equations (13) in the Python 

language. To generate uniformly distributed random numbers ( ), we use a Python 

module called random, which is a pseudo-random number generator. 

For the numerical simulation, the domain was divided into  parts, and samples 

of   and   random points were made in each of these parts (

 where   is the  part of the domain and  

). Also, for simplicity, we choose  . 
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The solutions were obtained considering  and using the following values for 

the initial conditions: ,  and , for the other 

parameters ,  and  were considered. To compare the solution found with 

the Monte Carlo method (MCM), the solution of the system (13) was used with the finite 

difference method (FDM) as used in the work of (TAVARES and LAZO, 2022). 

In Figure 1 we see the system solution (9) using MCM and FDM. In this solution, a step 

 days, and  was used to show the statistical fluctuations generated 

by the MCM. The value of  gives us the number of random numbers generated at each 

sample for time  . 

 

  

Figure 1. Comparison of the SIR -fractional system solution by FDM and by MCM 
with 𝐿 = 300, ℎ = 0.5 and  𝑖 = 5. 

 
To check how the statistical convergence of the solution occurs, the value of  was 

doubled in Figure 2. In this case, despite a small change in , better convergence can be 

seen compared to the previously obtained solution. 
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Figure 2. Comparison of the SIR -fractional system solution by FDM and by MCM 
with 𝐿 = 300, ℎ = 0.5 and  𝑖 = 10. 

 

Using  and , we obtain in figures 3 and 4 MCM solutions that are much 

closer to those of FDM. 

 

             

Figure 3. Comparison of the SIR -fractional system solution by FDM and by MCM 
with 𝐿 = 300, ℎ = 0.5 and  𝑖 = 100. 
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These results illustrate how statistical convergence of the system solution occurs by 

increasing the value of . This is due, as we saw in (8), to the reduction of the standard 

error.  

Figure 4. Comparison of the SIR -fractional system solution by FDM and by MCM 
with𝐿 = 300, ℎ = 0.5 and  𝑖 = 1000. 

 

 
5. CONCLUSIONS 

 

Fractional calculus is a mathematical tool used to study problems involving nonlocality 

and memory effects in various fields of knowledge. An example is the study of the effects of 

memory in an epidemic (see (BARROS et al., 2021) and (TAVARES and LAZO, 2022)). In 

this context, it becomes necessary to develop efficient numerical methods to solve fractional 

differential equations. The method proposed in this article is the MCM. As an example, we 

apply the MCM to obtain the solution of the fractional SIR model. To study the statistical 

convergence, we compare the solution obtained with MCM with the solution obtained with 

the FDM proposed in (TAVARES and LAZO, 2022). It is important to emphasize that the 

goal of this work was to show that MCM can be used to solve systems of fractional 

differential equations, even when these equations contain singular integrands. For this 

reason, we have chosen as an example of application a well-known and well-performing 

system, the fractional SIR model. Given the complexity and computational cost, a study will 

be carried out in the future comparing the solution of more complicated systems by MCM 

with the solution by other numerical methods. 

 

 



DOI 10.18605/2175-7275/cereus.v15n1p92-104 
Revista Cereus 
2023 Vol. 15 N. 1 

FERREIRA, L. N.; LAZO, M. J. 
The Monte Carlo method applied to the fractional SIR model. 

 

 

103 

 
REFERENCES 
 
AKHTAR, M. N, et al. Solving Initial Value Ordinary Differential Equations by Monte Carlo 
Method. Proc. IAM. v.4, 2015, p. 149-174. 
 
BARROS, L. C, et al. The Memory Effect on Fractional Calculus: An Application in the 
Spread of Covid-19. Computational and Applied Mathematics. 40 (3), 2021, p.1-21. 
 
DIETHELM, K.  The Analysis of Fractional Differential Equations: An Application-
Oriented Exposition Using Operators of Caputo Type. Berlin: Springer, 2004. 
 
DUNN, W. L.; SHULTIS, J. K. Exploring Monte Carlo Methods. Amsterdam: Elsevier, 
2022. 
 
FERREIRA, L. N.; LAZO, M. J. Método de Monte Carlo Aplicado ao cálculo fracionário. 
Trends in Computational and Applied Mathematics. 23, 2, 2022, p.243-255. 
 
HILFER, R. Applications of Fractional Calculus in Physics. Singapore: World Scientific, 
2000. 
 
KALOS, M. H.; WHITLOCK, P. A. Monte Carlo Methods. Weinheim: John Wiley & Sons, 
2009. 
 
KERMACK, W.O.; MCKENDRICK, A. G.  A Contribution to the Mathematical Theory of 
Epidemics. Proceedings of the royal society of London. Series A, Containing papers 
of a mathematical and physical character. 115, 772, 1927, p.700-721. 
 
KILBAS, A. A, et al. Theory and Applications of Fractional Differential Equations. 
Amsterdam: Elsevier, 2006. 
 
MORDECHAI, S. Application of Monte Carlo Method in Science and Engineering. 
London: InTech, 2011. 
 
NIEDERREITER, H. Random number generation and quasi-Monte Carlo methods. 
Philadelphia: Society for Industrial and Applied Mathematics, 1992. 
 
OLDHAM, K.; SPANIER, J. The Fractional Calculus Theory and Applications of 
Differentiation and Integration to Arbitrary Order. New York: Elsevier, 1974. 
 
SABATIER, J, et al. Advances in fractional calculus. Dordrecht: Springer, 2007. 
 
SAMKO, S. G, et al. Fractional integrals and derivatives. Yverdon-les-Bains, Switzerland: 
Gordon and breach science publishers, Yverdon, 1993. 
 
TAVARES, C. A.; LAZO, M. J. Dynamic Systems with Fractional Derivatives Applied to 
Interagent Populations Problems. Trends in Computational and Applied Mathematics, 
2022. 23, 2, 2022, p.299-314. 
 



DOI 10.18605/2175-7275/cereus.v15n1p92-104 
Revista Cereus 
2023 Vol. 15 N. 1 

FERREIRA, L. N.; LAZO, M. J. 
The Monte Carlo method applied to the fractional SIR model. 

 

 

104 

WILLIAMSON, T. Calculating Pi Using Monte Carlo Method. The Physics Teacher. 51, 8, 
2013, p. 468-469.  


