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ABSTRACT 

 

This work presents a systematic approach to solving Fractional Ordinary Differential 
Equations (FODEs) of boundary value problems using the Shooting Method. This 
approach converts a boundary value problem into an initial value problem by defining 
sensitivity equations. The Predictor-Corrector Method with Caputo-type fractional 
derivative is used to integrate this system. The proposed approach is evaluated 
considering three case studies in Chemical Engineering. The results demonstrate that 
the proposed approach is a good alternative to solve this class of problems. In addition, 
as expected, the obtained profiles were dependent on fractional order. 

 

Keywords: Fractional Ordinary Differential Equations. Boundary Value Problem. 
Shooting Method. Numerical Method. 

 

RESUMO 

 

Este trabalho tem por objetivo apresentar uma metodologia sistemática para a 
resolução numérica de Equações Diferenciais Ordinárias Fracionárias (EDOF) de valor 
no contorno usando o Método do Chute Simples. Nesta abordagem o problema de valor 
no contorno é transformado em um problema de valor inicial via dedução das equações 
de sensibilidade. Para integrar este sistema utiliza-se o Método Preditor-Corretor 
Fracionário (MPCF) considerando a derivada fracionária de Caputo. A metodologia 
proposta é aplicada em três estudos de caso clássicos de Engenharia Química. Os 
resultados obtidos demonstram que a abordagem proposta se configura como uma boa 
alternativa para a resolução dessa classe de problemas. Além disso, como esperado, 
os perfis obtidos são dependentes da ordem fracionária. 

 

Palavras-chave: Equações Diferenciais Ordinárias Fracionárias. Problemas de Valor 
no Contorno. Chute Simples. Método Numérico. 
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1. INTRODUCTION 
 
Many physical, chemical, and biological phenomena present inherently non-linear 

behavior, which implies that modeling these phenomena is complex (GHANDEHARI; 

RANJABAR, 2013). The complexities can be incorporated into the models by the 

hypotheses definition, as well as by the generalization of traditional differential models that 

present integer order for the fractional context, generated in the so-called Fractional 

Ordinary Differential Equation (FODE) (RODRIGUES; OLIVEIRA, 2015). 

The FODEs Systems have been widely applied to Engineering areas such as Fluid 

Mechanics, Viscoelasticity, Electrochemistry, Heat Transfer, and Control Theory since they 

can evaluate phenomena with time delay and memory effect (OLIVEIRA; MACHADO, 

2014). They have received attention due to their more accurate modeling for systems in 

which memory and heredity effects are relevant (SUN et al., 2019). 

Solving a fractional differential equation problem (analytically or numerically) can be 

difficult since it is a generalization of traditional differential equations with integer order. 

Thus, one must choose the type of approximation for the fractional derivative to solve this 

problem. Liu and Hou (2017) proposed an approach based on the Finite Difference Method 

for solving partial differential equations using fractional order. Lobato et al. (2020) proposed 

the extension of the Orthogonal Collocation Method (OCM) to solve fractional partial 

differential equations as an alternative to minimize the effect of the number of discretization 

points and, consequently, the dimension of the problem to be analyzed. 

The specialized literature presents several definitions concerning fractional 

derivatives. One of them is the Grünwald-Letnikov proposal, which represents a summation 

of an infinite series in which the entire order is replaced by an arbitrary order 𝛼 (LORENZO; 

HARTLEY, 1998). In addition, there are also those derived from Marchaud, Chen, 

Hadamard, Riesz, Weyl, Osler, Hilfer, Davidson-Essex, Coimbra, Canavati, Cossar, 

Jumarie, Caputo-Hadamard, and Hilfer-Katugampola (OLIVEIRA; OLIVEIRA, 2014). These 

derivatives can approximate fractional terms, transforming the original problem into a purely 

algebraic equivalent (PODLUBNY, 1999). Riemann-Liouville and Caputo are the most 

common fractional derivatives, and they are similar. The Caputo-type fractional derivative 

modifies the definition of the fractional derivative proposed by Riemann-Liouville by 

changing the order of the derivative and integral operators (CAPUTO, 1993; OLIVEIRA; 

MACHADO, 2014). 
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In this context, we propose a systematic approach for the numerical resolution of 

fractional boundary value problems using the Caputo-type fractional derivative by the 

Shooting Method associated with the Fractional Predictor-Corrector Method (GARRAPPA, 

2009). This work is organized as follows. Section 2 briefly describes the Shooting Method. 

Section 3 addresses important concepts about Fractional Calculus. The proposed approach 

is described in Section 4. The results for the three case studies based on Chemical 

Engineering problems are reported in Section 5. The last section presents the conclusions 

of this work. 

 
2. SHOOTING METHOD 

 
The Shooting Method is a numerical approach proposed to solve a boundary value 

problem. This method transforms a boundary value problem into an initial value problem by 

defining sensitivity equations (DAVIS, 1984). The main advantage is the powerful numerical 

methods used for solving initial value problems. However, the main disadvantage is that it 

is not as robust as finite difference or collocation methods (DAVIS, 1984). 

To characterize the problem of interest, consider the second-order boundary value 

problem described as: 
 

 𝑑2𝑦

𝑑𝑥2
= 𝐹 (𝑥, 𝑦,

𝑑𝑦

𝑑𝑥
) ,    𝑎 ≤ 𝑥 ≤ 𝑏 (1) 

 

subject to the following boundary conditions: 

 
𝑎0𝑦(𝑎) − 𝑎1

𝑑𝑦

𝑑𝑥
|

𝑎
= 𝛼 (2) 

 
𝑏0𝑦(𝑎) + 𝑏1

𝑑𝑦

𝑑𝑥
|

𝑏
= 𝛽

 
(3) 

 

where 𝑦 is the vector of dependent variables, 𝑥 is the independent variable, 𝐹 is the right-

hand side of the ordinary differential equations, 𝑎 and 𝑏 are the lower and upper limits of the 

domain, 𝑎0, 𝑎1, 𝑏0, 𝑏1, 𝛼, and 𝛽 are constants that define the characteristics of the boundary 

value problem. 

The above model can be rewritten as an initial value problem represented by Eq.(4)-

(6): 
 

𝑑2𝑢

𝑑𝑥2
= 𝑓 (𝑥, 𝑢,

𝑑𝑢

𝑑𝑥
) ,    𝑎 ≤ 𝑥 ≤ 𝑏 (4) 

 𝑢(𝑎) = 𝑎1𝑠 − 𝑐1𝛼
 

(5) 
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 𝑑𝑢

𝑑𝑥
|

𝑎
= 𝑎0𝑠 − 𝑐0𝛼

 
(6) 

 

where 𝑢 is the vector of dependent variables, 𝑓 is the right-hand side of the ordinary 

differential equations, 𝑐0 and 𝑐1 are constants that define the characteristics of the problem, 

and 𝑠 is a real parameter. In this problem, the following relation should be satisfied (DAVIS, 

1984): 
 

𝑎1𝑐0 − 𝑎0𝑐1 = 1 (7) 

 

Thus, the solution of the model described by Eq.(4)-(6) will be the solution of the model 

described by Eq.(1)-(3) if the parameter 𝑠 satisfies the original boundary condition (∅) given 

by: 
 

∅(𝑠) ≡ 𝑏0𝑢(𝑏, 𝑠) + 𝑏1

𝑑𝑢

𝑑𝑥
|

(𝑏,𝑠)
= 𝛽 (8) 

 

To find the numerical solution of the second-order ordinary differential equations given 

by Eq.(4)-(6), it is necessary to convert them into first-order ordinary differential equations 

defined as: 
 

𝑑𝜔

𝑑𝑥
= 𝑣, 𝑎 ≤ 𝑥 ≤ 𝑏 (9) 

 𝑑𝑣

𝑑𝑥
= 𝑓(𝑥, 𝜔, 𝑣), 𝑎 ≤ 𝑥 ≤ 𝑏

 

(10) 

 𝑤(𝑎) = 𝑎1𝑠 − 𝑐1𝛼
 

(11) 

 𝑣(𝑎) = 𝑎0𝑠 − 𝑐0𝛼
 

(12) 

 

where 𝜔 and 𝑣 are the auxiliary dependent variables. It is important to mention that this 

model is defined at the lower limit of the domain (𝑥 = 𝑎), i.e., both boundary conditions are 

defined at 𝑥 = 𝑎 due to the insertion of the parameter 𝑠. 

Finally, to integrate the initial value problem given by Eq.(9)-(12), it is necessary to 

inform the value of the parameter 𝑠 since the other parameters (𝑎0, 𝑎1, 𝑏0, 𝑏1, 𝑐0, 𝑐1, 𝛼, and 

𝛽) are known or easily calculated for a particular case study. Thus, an initial value of the 

parameter 𝑠 is defined, and the differential model is solved. Since the initial value will not 

likely be the optimal value for the parameter 𝑠, i.e., the boundary condition in Eq.(8) will not 

be satisfied, this value should be adjusted. For this purpose, Newton's Method is considered, 

and the parameter 𝑠 is updated as expressed in Eq.(13): 
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𝑠𝑖+1 ≡ 𝑠𝑖 −
(∅)𝑖

(
𝑑∅

𝑑𝑠
)

𝑖
 (13) 

 

where the first value of s1 is user-defined. To find the derivative of ∅ with respect to 𝑠 (∅′(𝑠)) 

it is necessary to define the sensitivity equations for the system of interest. These sensitivity 

equations are given by: 
 

𝜉(𝑥) =
𝜕𝜔(𝑥, 𝑠)

𝜕𝑠
 (14) 

 
𝜂(𝑥) =

𝜕𝑣(𝑥, 𝑠)

𝜕𝑠
 

(15) 

 

Differentiating Eq.(9) and Eq.(10) with respect to 𝑠 we obtain: 
 

𝜕𝜉

𝜕𝑥
= 𝜂 (16) 

 𝜕𝜂

𝜕𝑥
=

𝜕𝑓

𝜕𝑣
𝜂 +

𝜕𝑓

𝜕𝑤
𝜉
 

(17) 

 

The boundary conditions for this system are given by: 

 𝜉(𝑎) = 𝑎1

 
(18) 

 𝜂(𝑎) = 𝑎0

 
(19) 

 

In this case, solving the initial value problem given by Eq.(9)-(12) and Eq.(16)-(19) 

considering a pre-defined value for the parameter 𝑠, the derivative of ∅ can be evaluated. 

For this purpose, the following relation is used: 
 

𝑑∅

𝑑𝑠
= 𝑏0𝜉(𝑏, 𝑠) + 𝑏1𝜂(𝑏, 𝑠) (20) 

 

After calculating the value of this derivative, the parameter 𝑠 can be updated using 

Eq.(13). This procedure is repeated until the absolute error for 𝑠 in two consecutive iterations 

is less than a user-defined tolerance. 

 

3. DEFINITIONS 
 
This section presents some approximations to evaluate fractional derivatives. These 

mathematical tools approximate the term 𝑑𝜇𝑓(𝑡)/𝑑𝑡𝜇 (where 𝜇 is a fractional order in a 

fractional differential problem) in boundary value problems. The most common approaches 

are presented in Podlubny (1999), Demirci and Ozalp (2012), Rehman and Khan (2012), 

Aslefallah and Rostamy (2014), Liu and Hou (2017), Yang, Machado, and Baleanu (2017), 
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Yang et al. (2017), Li and Rui (2018), Liang et al. (2018), Zhang (2018), and Yang et al. 

(2019). 

 

 

Definition 1 

  The Riemann–Liouville type fractional integral (𝐼𝜇𝑓(𝑡)) of order 𝜇 (𝜇 > 0) of a generic 

function 𝑓:(0, ∞) → ℝ is given by: 
 

 
𝐼𝜇𝑓(𝑡) =

1

𝛤(𝜇)
∫ (𝑡 − 𝜏)𝜇−1𝑓(𝜏)𝑑𝜏

𝑡

0

 (21) 

 

where 𝛤 denotes the Gamma function. 

 

Definition 2 

  The Riemann–Liouville type fractional derivative (𝐷𝜇𝑓(𝑡)) of order 𝜇 (𝜇 > 0) of a 

generic function 𝑓:(0, ∞) → ℝ is given by: 
 

 
𝐷𝜇𝑓(𝑡) =

𝑑𝑛

𝑑𝑡𝑛

1

𝛤(𝑛 − 𝜇)
∫ (𝑡 − 𝜏)𝑛−𝜇−1𝑓(𝜏)𝑑𝜏

𝑡

0

 (22) 

 

where n=[μ]+1 and [μ] is an operator that represents the integer part of μ. 

 

Definition 3 

  The Caputo-type fractional derivative (𝐷𝜇𝑓(𝑡)) of order 𝜇 (𝜇 > 0) of a generic function 

𝑓:(0, ∞) → ℝ is given by: 
 

 
𝐷𝜇𝑓(𝑡) =

1

𝛤(𝑛 − 𝜇)
∫ (𝑡 − 𝜏)𝑛−𝜇−1𝑓𝑛(𝜏)𝑑𝜏

𝑡

0

 (23) 

 

where n=[𝜇]+1 and [𝜇] is an operator that represents the integer part of 𝜇. 

 

Definition 4 

  The Shifted Grunwald fractional derivative (𝐷𝜇𝑓(𝑡)) of order μ (1 < 𝜇 < 2) of a generic 

function 𝑓:(0, ∞) → ℝ is given by: 
 

 
𝐷𝜇𝑓(𝑡) =

1

ℎ𝜇
∑ ((−1)𝑘

𝛤(𝜇 + 1)

𝛤(𝑘 + 1)𝛤(𝜇 − 𝑘 + 1)
) 𝑓(𝑥 − (𝑘 − 1)ℎ)

𝑀

𝑘=0

 (24) 

 

where 𝑀 is the number of discretization points and ℎ = (𝑡𝑓 − 𝑡0)/𝑀 is the integration step 

(𝑡0 and 𝑡𝑓 represent the initial and final time, respectively).   

 

Definition 5 
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  If 𝑓 is a continuous function with fractional order equal to 𝑘𝜇 (where 𝑘 is a positive 

integer and 1 < 𝜇 < 2), the fractional Taylor expansion for this function will be expressed as: 
 

 
𝑓(𝑡 + ℎ) = ∑

ℎ𝑘𝜇

𝛤(1 + 𝑘𝜇)
𝑓𝑘𝜇(𝑡)

∞

𝑘=0

 (25) 

 
4. METHODOLOGY 

 
This work investigates the influence of the fractional order 𝛾 ∈ [0,2] on simulated 

profiles considering the Shooting Method. For this purpose, the integer derivatives of the 

initial value problem (Eq.(9)-(12) and Eq.(16)-(19)) are replaced by the following fractional 

derivatives: 
 

 𝜔𝛾 = 𝑣, 𝜔(𝑎) = 𝑎1𝑠 − 𝑐1𝛼 (26) 
 𝑣𝛾 = 𝑓,   v(𝑎) = 𝑎0𝑠 − 𝑐0𝛼 (27) 
 𝜉𝛾 = 𝜂, 𝜉(𝑎) = 𝑎1

 
(28) 

 
𝜂𝛾 =

𝜕𝑓

𝜕𝑣
𝜂 +

𝜕𝑓

𝜕𝜔
𝜉, 𝜂(𝑎) = 𝑎0

 

(29) 

 

In summary, the proposed approach presents the following steps: 

 

• For each application, the parameters 𝑎0, 𝑎1, 𝑏0, 𝑏1, 𝑐0, 𝑐1, 𝛼, and 𝛽, the fractional order 

(𝛾), the initial value of the parameter 𝑠, and the tolerance to stop the iterative process 

are defined. 

• To solve the fractional initial value problem, the Fractional Predictor-Corrector 

Methodis considered (GARRAPPA, 2009).  

• After solving this problem, the functions ∅ (Eq.(8)) and ∅′ (Eq.(20) are evaluated. 

• The parameter 𝑠 is updated considering the obtained values for ∅  and ∅′.  

• If the absolute error of the parameter𝑠 in two consecutive iterations is less than a 

user-defined tolerance, the iterative process will be stopped. Otherwise, the 

procedure continues until to achieve convergence. 

5. RESULTS AND DISCUSSION 
 

This section presents the results of the proposed approach applied to three case 

studies considering Chemical Engineering problems. We evaluated different configurations 

for the fractional order and integration step size. The results are compared with those 

obtained by analytical and numerical solutions, the optimal value of the parameter 𝑠, the 

number of iterations, and the processing time (PT). The models are solved in an Intel Core 

i7-4770 Desktop microcomputer with 8GB of memory. 
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The fractional model’s evaluation considering 𝛾 > 1 requires a new initial condition. 

Thus, the derivative of the vector of dependent variable with respect to the independent 

variable is equal to zero (when the independent variable is equal to the lower limit).  

 

5.1 Cyclohexane Reactor Problem 

 

Consider the dehydrogenation reaction of cyclohexane catalyzed by Pt/alumina 

spheres. The cyclohexane reactor problem evaluates the cyclohexane concentration profile 

in a porous catalyst pellet. The mathematical model formulation of this process considered 

the following hypotheses (DAVIS, 1984): i) steady state; ii) isothermal system; iii) diffusion 

as the main contribution; iv) first-order reaction; v) the concentration profile in the radial 

direction; and vi) constant physical properties. Based on these hypotheses, the 

dimensionless mathematical model for the cyclohexane concentration along the sphere is 

given by: 
 

 𝑑2𝐶

𝑑𝑅2
+

2

𝑅

𝑑𝐶

𝑑𝑅
= 𝛩2

𝐶

𝐶0
, 0 ≤ 𝑅 ≤ 1 (30) 

 𝑑𝐶

𝑑𝑅
= 0, 𝑅 = 0 (31) 

 𝐶 = 1, 𝑅 = 1
 

(32) 
 

where 𝐶 is the dimensionless cyclohexane concentration (defined as the relation between 

the cyclohexane concentration at any point on the sphere and the cyclohexane 

concentration at the surface of the sphere), 𝑅 is the dimensionless radius (defined as the 

relation between a generic radius and the sphere radius), 𝐶0 is the cyclohexane 

concentration atthe surface of the sphere, and 𝛩 is the Thiele modulus. 

The analytical solution for this problem is defined as: 
 

 
𝐶 =

𝑠𝑖𝑛ℎ( 𝛩𝑅)

𝑅 𝑠𝑖𝑛ℎ( 𝛩)
 (33) 

 

To apply the Shooting Method, the second-order integer ordinary differential model is 

transformed into a first-order fractional ordinary differential model given by: 
 

 𝜔𝛾 = 𝑣, 𝜔(0)=s (34) 
 

𝑣𝛾 =
𝛩2

𝐶0
𝜔 −

2

𝑅
𝑣, 𝑣(0)=0 (35) 

 𝜉𝛾 = 𝜂, 𝜉(0)=1
 

(36) 
 

𝜂𝛾 =
𝛩2

𝐶0
−

2

𝑅
𝜂, 𝜂(0)=0 

(37) 

 

where 𝜔 is equal to 𝐶, 𝑣 is an auxiliary variable, and 𝜉 and 𝜂 represent the sensitivity 

variables. 
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Since the 𝜔 at 𝑅 = 0 is unknown, the value of the parameter 𝑠 should be estimated in 

which the value of 𝜔 at 𝑅 = 1 will be satisfied. Thus, the values of ∅  and ∅′ must be 

calculated by both Eq.(8) and Eq.(20). 

Table 1 presents the cyclohexane reactor problem results considering different values 

for the fractional order (𝛾) and different integration step sizes (∆𝑅). The initial value of the 

parameter 𝑠 is equal to 1. The iterative process should stop when the absolute errorin two 

consecutive iterationsis less than 10-8 (tolerance). In addition, the average absolute error 

(∑) considering analytical and numerical solutions is also estimated.  

 

Table 1. Results for the cyclohexane reactor problem (𝛩 = 2.236 and 𝐶0 = 1). 

𝜸 ∆𝑹 𝒔𝟏 𝒔𝒌 Iteration ∑ PT (s) 

1 

0.1000 

1 

0.4595 18.0  1.37×10-4 0.1404 

0.0100 0.4829  16.0  1.85×10-8 0.4681 

0.0010 0.4835  16.0  9.97×10-13 1.6380 

0.0001 0.4835  16.0  3.75×10-20 5.2572 

0.8   0.3617  24.0   -  0.5056 

0.9   0.4356 19.0 - 0.4808 

1 0.0100 1 0.4829 16.0 1.85×10-8 0.4681 

1.1   0.5258 14.0 - 0.4496 

1.2   0.5659 13.0 - 0.4184 

 

From Table 1, we can observe that, for the integer order (𝛾 equal to 1), a decrease in 

the value of ∆𝑅 decreased the average absolute error (∑). This result was expected since 

the integration step size is related to the refinement level (see Table 1 and Figure1(a)). 

Furthermore, regardless of the value of ∆𝑅, the proposed approach always converged to the 

optimal value of 𝑠 (0.4835) for 𝛾 equal to 1, as reported by Davis (1984). For the number of 

iterations, a similar result for each value of ∆𝑅 is achieved. However, the higher the 

refinement level, the longer the processing time. As expected, a more refined mesh means 

a greater number of evaluations of the mathematical model increasing the processing time. 

For fractional order, we can observe that this parameter influences the concentration 

profile and, consequently, the value of the parameter 𝑠. Thus, the higher the value for 

fractional order, the higher the value of the parameter 𝑠. Finally, higher values of fractional 

order reduced the number of iterations required to find the optimal solution. 
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(a) Analytical × Numerical (𝛾 = 1). (b) 𝛾=[0.8;0.9;1;1.1;1.2] and ∆𝑅 = 0.01. 
 

Figure 1. Influence of the integration step size and fractional order for the 
cyclohexane reactor problem. 

 

5.2 Rectangular Fin Problem 

 

Consider a rectangular fin to increase the heat transfer area between the surface and 

a fluid. The structure is welded to a vertical wall where the temperature (𝑇) at 𝑋 = 0 is equal 

to 𝑇𝑤, and the system is thermally insulated at 𝑥 = 𝐿 (length of fin). The following hypotheses 

are considered in the mathematical model formulation (Davis, 1984): i) steady state; ii) 

conduction in the x-directionas the main heat contribution; iii) constant thermal conductivity; 

iv) constant convection heat transfer coefficient; andv) no phase change. The dimensionless 

mathematical model is given by: 

 𝑑2𝜃

𝑑𝑋2
= 𝐻2𝜃, 0 ≤ 𝑋 ≤ 1 (38) 

 𝜃 = 1, 𝑋 = 0 (39) 
 𝑑𝜃

𝑑𝑋
= 0, 𝑋 = 1

 

(40) 
 

where 𝜃 is the dimensionless temperature (defined forthe wall and the room temperatures), 

𝑋 is the dimensionless length (defined in terms of a generic length and length of fin), and 𝐻 

is a dimensionless defined in function of the thermal conductivity, the convection heat 

transfer coefficient, and the length and thickness of fin. 

The analytical solution for this problem is given by: 
 

 
𝜃 =

𝑐𝑜𝑠ℎ( 𝐻(1 − 𝑋))

𝑐𝑜𝑠ℎ( 𝐻)
 (41) 

 

The correspondent first-order fractional ordinary differential model for this case studyis 

defined as: 
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 𝜔𝛾 = 𝑣, 𝜔(0)=1 (42) 
 𝑣𝛾 = 𝐻2𝜔, 𝑣(0) = 𝑠 (43) 
 𝜉𝛾 = 𝜂, 𝜉(0)=0

 
(44) 

 𝜂𝛾 = 𝐻2𝜉, 𝜂(0)=1 (45) 
 

where 𝜔 is equal to 𝜃, 𝑣 is an auxiliary variable, and 𝜉 and 𝜂 represent the sensitivity 

variables.  

In this model, the value of 𝑣 at 𝑋 equal to 0 is unknown. Thus, we should find the value 

of the parameter 𝑠 in which the constraint 𝑣 (𝑋 = 1) will be satisfied. 

Table 2 presents the results for the rectangular fin problem considering different 

configurations for 𝛾 and ∆𝑋 (the tolerance is set to 10-8). 

Table 2. Results for the rectangular fin problem (𝐻 = 2). 

𝜸 ∆𝑿 𝒔𝟏 𝒔𝒌 Iteration ∑ PT (s) 

1 

0.1000 

1 

-1.9261  3.0  1.07×10-5 0.0468 

0.0100 -1.9280 3.0 8.52×10-10 0.0936 

0.0010 -1.9280 3.0 4.27×10-16 0.3120 

0.0001 -1.9280 3.0 8.78×10-21 2.2301 

0.8   -1.9441  3.0 -  0.0936 

0.9   -1.9330 3.0 - 0.1092 

1 0.0100 1 -1.9280 3.0 8.52×10-10 0.0936 

1.1   -1.9300 3.0 - 0.1248 

1.2   -1.9382 3.0 - 0.1248 

 

For the influence of the parameter ∆𝑋, smaller values led to smaller average absolute 

errors (∑) (see Table2), which is similar to the first case study results. The result for integer 

order presented in Figure 2(a) was consistent with those reported by Davis (1984) (𝑠 =

−1.9280). 

Figure 2(b) shows that the increase in the value of 𝛾 decreased the dimensionless 

temperature for 𝑋 equal to 1. The same number of iterations is required for all meshes 

considered. This indicates that, for this application, ∆𝑋 does not influence the number of 

iterations required to solve the problem. As expected, the increase in the number of mesh 

points increased the processing time. Finally, the fractional order influenced the 

dimensionless temperature profiles, similar to the first case study. 
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(a) Analytical × Numerical (𝛾 = 1). (b) 𝛾=[0.8; 0.9; 1; 1.1;1.2] and ∆𝑋 = 0.01. 
 

Figure 2. Influence of the integration step size and fractional order for the 
Rectangular Fin problem. 

 

5.3 Thin Film Flow Problem 

 

The last case considers a thin film flow of third-order fluid on a moving belt governed 

by the following boundary value problem (SAJID and HAYAT, 2008): 

 𝑑2𝑣𝛿

𝑑𝑥2
+

6(𝛽2 + 𝛽3)

𝜆
(

𝑑𝑣𝛿

𝑑𝑥
)

2 𝑑2𝑣𝛿

𝑑𝑥2
−

𝜌𝑔

𝜆
= 0 (46) 

 𝑣𝛿 = 𝑈0, 𝑥 = 0 (47) 
 𝑑𝑣𝛿

𝑑𝑥
= 0, 𝑥 = 𝛿

 

(48) 
 

where 𝑣𝛿 is the fluid velocity, 𝜌 is the density, 𝜆 is dynamic viscosity, 𝛽2  and 𝛽3 are the 

material moduli of third-order fluid, 𝑔 is the acceleration due to gravity, and 𝛿 the thickness 

of the thin layer. 

The dimensionless variables are defined as: 

 𝑉 =
𝑣𝛿

𝑈0
 (49) 

 𝑋 =
𝑥

𝛿
 (50) 

 

and after some manipulations, the dimensionless mathematical model is given by: 

 𝑑2𝑉

𝑑𝑋2
+ 𝜀 (

𝑑𝑉

𝑑𝑋
)

2 𝑑2𝑉

𝑑𝑋2
− 𝐾 = 0 (51) 

 𝑉 = 1, 𝑋 = 0 (52) 
 𝑑𝑉

𝑑𝑋
= 0, 𝑋 = 1

 

(53) 
 

where 

 
𝜀 =

6(𝛽2 + 𝛽3)𝑈0
2

𝜆𝛿2
 (54) 
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𝐾 =

𝜌𝑔𝛿2

𝜆𝑈0
 (55) 

 

The correspondent first-order fractional ordinary differential model for this case study 

is defined as: 
 

 𝑉𝛾 = 𝑄, 𝑉(0)=1 (56) 
 

𝑄𝛾 =
𝐾

1 + 𝜀𝑄2
, 𝑄(0) = 𝑠 (57) 

 𝜉𝛾 = 𝜂, 𝜉(0)=0
 

(58) 
 

𝜂𝛾 = (
−2𝐾𝜀𝑄

(1 + 𝜀𝑄2)2
) 𝜂, 𝜂(0)=1 (59) 

 

where 𝜔 is equal to 𝑉, 𝑄 is an auxiliary variable, and 𝜉 and 𝜂 represent the sensitivity 

variables. 

In this case, the value of 𝑄 at 𝑋 equal to 0 is unknown. Thus, we should find the value 

of the parameter 𝑠 in which the constraint 𝑄(𝑋 = 1)will be satisfied. The analytical solution 

of this case study is unknown. Thus, we obtained the numerical solution considering the 

Normal Collocation Method with 50 collocation points (for integer order) to compare the 

results. The average absolute error (∑) was calculated by the difference between both 

numerical solutions.  

Table 3 presents the thin film flow problem results considering different values for the 

parameters 𝐾 and 𝜀 and fractional order equal to 1 (∆𝑋 = 0.01). From this table, we can 

observe that the combination between 𝐾 and 𝜀 led to different values of the parameter 𝑠. For 

𝐾 equal to 1, an increase in the value of the parameter 𝜀 increased the parameter 𝑠, while, 

for 𝜀 equal to 1, an increase in the value of the parameter 𝐾 decreased the parameter 𝑠. The 

number of iterations did not change with the combination of the parameters considered. The 

average absolute error demonstrates the accuracy of the results for the Normal Collocation 

Method. Finally, the processing time required by the proposed approach was more sensitive 

for variation of the parameter 𝜀, i.e., it is observed a fluctuation in these values for parameter 

𝐾. 

Figure 3(a) shows the variation of the velocity field for large values of the third-order 

parameter 𝜀 considering integer order. The velocity decreased for the large values of the 

parameter 𝜀. Figure 3(b) presents the effects of the parameter 𝐾 on the velocity field 

considering integer order. From this figure, we can observe that the velocity decreased with 

an increase in the parameter 𝐾. Finally, it is important to mention that these profiles agree 

with those obtained by Sajid and Hayat (2008). 
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Table 3. Results for the thin film flow problem considering different values for the 
parameters 𝐾 and 𝜀 and fractional order equal to 1 (∆𝑋 = 0.01). 

𝑲 𝜺 𝒔𝟏 𝒔𝒌 Iteration ∑ PT (s) 

1 

0.2 

1 

-0.9439     6.0 1.44×10-9 0.3120 

0.4 -0.9021     6.0 4.54×10-9 0.2340 

0.6 -0.8688     6.0 6.77×10-9 0.2496 

0.8 -0.8412     6.0 3.44×10-9 0.3900 

0.2 

1 1 

-0.1974     5.0 5.42×10-9 0.2184 

0.4 -0.3815     6.0 7.84×10-9 0.2184 

0.6 -0.5458     6.0 1.22×10-9 0.2028 

0.8 -0.6903    6.0 6.56×10-9 0.1872 
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(a) 𝐾=1 and𝜀 = [0;  0.2;  0.4;  0.6;  0.8] (b) 𝐾 = [0;  0.2;  0.4 ; 0.6;  0.8] and 𝜀 = 1. 
 

Figure 3. Influence of the parameters 𝐾 and 𝜀 considering integer order for the thin film 
flow problem. 

Table 4 presents the thin film flow problem results considering the parameters 𝐾 and 

𝜀 equal to 0.5 and different values for the fractional order. From this table, we can observe 

that the increase in the value of the parameter γ increased the parameter 𝑠. The number of 

iterations did not change, and the processing time was different for each fractional order. 

Figure 4 presents the influence of the fractional order in the dimensionless velocity 

profile. It is possible to observe that the increase in this parameter converted a nonlinear 

profile into (approximately) a linear one.  
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Table 4. Results for the thin film flow problem considering different values for the fractional 
order (ΔX =0.01, 𝐾 = 0.5 and𝜀 = 0.5). 

𝜸 𝒔𝟏 𝒔𝒌 Iteration ∑ PT (s) 

0.8  -0.5203     6.0 - 0.4836 

0.9  -0.5019     6.0 - 0.2808 

1 1 -0.4814     6.0 6.45×10-9 0.1716 

1.1  -0.4593     6.0 - 0.3432 

1.2  -0.4360     6.0 - 0.2184 
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Figure 4. Influence of the fractional order considering ∆𝑋 = 0.01, 𝐾 = 0.5, and 𝜀 = 0.5 for 
the thin film flow problem. 

 

6. CONCLUSIONS 
 
This work proposed and solved three fractional boundary value ordinary differential 

problems. The Shooting Method transformed the original boundary value problem into an 

initial value problem. The final model was rewritten as a fractional model. The Fractional 

Predictor-Corrector Method associated with Caputo-type fractional derivative integrated the 

fractional model.  

In general, the proposed approach achieved consistent results compared to the 

analytical or numerical solutions for fractional order equal to 1. From the physical point of 

view, it is evident that the variation in the value of the fractional order changes the profiles. 

In practice, the fractional order variation allows a greater adherence between model and 

experimental points in a given application since, in the fractional context, there is an increase 

in the number of degrees of freedom. 

For future work, inverse and optimal control problems will be investigated, as well as 

the solution of fractional partial differential equations.  
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