Solving the Turbine Balancing Problem Using a Metropolis Algorithm Hybridized with the Hooke-Jeeves Method
Abstract
Combinatorial optimization problems have been a great challenge for metaheuristics. One of them, the turbine balancing problem, which is NP-hard, is solved here. In order to do so, we use a Metropolis Algorithm, the Particle Collision Algorithm (PCA), hybridized with the well-known Hooke-Jeeves pattern search method. The aim of this algorithm, called Hooke-Jeeves PCA, is to perform a wide search in the solution space using a stochastic optimization method (the PCA) and then scan the promising areas with a local search technique (Hooke-Jeeves). This algorithm is favorably compared against a state-of-the-art metaheuristic, differential evolution. Our results show that Hooke-Jeeves PCA has the potential to be applied to other combinatorial optimization problems.
Copyright (c) 2021 REVISTA CEREUS
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
DECLARAÇÃO DE TRANSFERÊNCIA DE DIREITOS AUTORAIS
Os autores do manuscrito submetido declaram ter conhecimento que em caso de aceitação do artigo, a Revista Cereus, passa a ter todos os direitos autorais sobre o mesmo. O Artigo será de propriedade exclusiva da Revista, sendo vedada qualquer reprodução, em qualquer outra parte ou meio de divulgação, impressa ou eletrônica.