Previsão do consumo de energia elétrica em uma agroindústria: um estudo de caso usando redes LSTM e CNN-LSTM
Abstract
This work aims to develop and compare models of Artificial Neural Networks (ANN) to predict the consumption of electricity in an agroindustry. The database, made available by the Electrical Energy Commercialization Chamber (CCEE), presents a historical series, of electricity consumption, in the period between January 2020 and January 2021, representing 6816 hourly observations. Models, based on the LSTM and CNN-LSTM architecture, were implemented, in Python language, using the Keras framework. Results obtained from the models were compared using the metrics MAPE (Mean Absolute Percentage Error), MAE (Mean Absolute Error) and RMSE (Root Mean Squared Error). We verified, for a horizon of 24 hours, that the CNN-LSTM model presented better performance.
Copyright (c) 2022 REVISTA CEREUS
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
DECLARAÇÃO DE TRANSFERÊNCIA DE DIREITOS AUTORAIS
Os autores do manuscrito submetido declaram ter conhecimento que em caso de aceitação do artigo, a Revista Cereus, passa a ter todos os direitos autorais sobre o mesmo. O Artigo será de propriedade exclusiva da Revista, sendo vedada qualquer reprodução, em qualquer outra parte ou meio de divulgação, impressa ou eletrônica.