Optimal Kernel Parameter Setting for Faults Detection with Stochastic Methods and Data Preprocessing
Resumen
In this paper, an indirect optimization criterion for parameter setting the kernel-based fault detection process is applied. The procedure analyzed involves the data preprocessing through the Kernel Independent Component Analysis (KICA) method, and the fault detection by using a classifier based on the Kernel Fuzzy C-means (KFCM) algorithm to reduce the classification errors. The main objective of the paper is the adjustment of the kernel parameters to obtain the best possible performance in the fault detection. To achieve this, two different metaheuristic algorithms are used: Differential Evolution and Particle Swarm Optimization. The proposed approach was evaluated by using the Tennessee Eastman (TE) process benchmark.
Derechos de autor 2019 REVISTA CEREUS
Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial-SinObrasDerivadas 4.0.
DECLARAÇÃO DE TRANSFERÊNCIA DE DIREITOS AUTORAIS
Os autores do manuscrito submetido declaram ter conhecimento que em caso de aceitação do artigo, a Revista Cereus, passa a ter todos os direitos autorais sobre o mesmo. O Artigo será de propriedade exclusiva da Revista, sendo vedada qualquer reprodução, em qualquer outra parte ou meio de divulgação, impressa ou eletrônica.