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RESUMO 

 

Neste artigo é apresentada uma nova metodologia numérica contemplando o 
desenvolvimento de um método da classe dos espectro-nodais (malha grossa) para a 
solução de problemas de transporte de nêutrons na formulação das ordenadas 

discretas (𝑆𝑁), em geometria unidimensional, considerando o espalhamento 

anisotrópico, fonte fixa e multigrupo de energia. O método, denominado Método 
Espectral Determinístico (MED), baseia-se, inicialmente, na análise espectral das 

equações de transporte de nêutrons 𝑆𝑁. As incógnitas dessa metodologia são os 

fluxos angulares nos contornos e o fluxo angular médio no interior dos nodos 
espaciais.  Os valores numéricos obtidos para essas grandezas, a menos dos erros 
da aritmética finita computacional, concordam com a solução analítica da equação de 

transporte 𝑆𝑁 no domínio espacial utilizado.  Os resultados numéricos são mostrados 

e comparados com o tradicional método de malha fina, DD,cf., Diamond Difference e 
os métodos nodais SGF, cf., spectral Green’s function e o método FN para ilustrar a 
precisão numérica nos resultados obtidos pelo MED. 

 

Palavras-chave: Teoria do transporte de nêutrons; Espalhamento anisotrópico; 
Metodologia nodal numérica; Ordenadas discretas; Problemas de fonte-fixa, 
Modelagem computacional determinística; Geometria unidimensional. 

 

ABSTRACT 

 

A new approach for the development of a numerical method of spectral nodal class for 
the solution of multigroup, anisotropic slab geometry, discrete ordinates transport 
problems with fixed-source is analyzed in this paper. The method, denominated 
Spectral Deterministic Method (SDM), is based on the spectral analysis of the neutron 

transport equations in the formulation of discrete ordinates (𝑆𝑁). The unknowns in the 

methodology are the cell-edge, and cell average angular fluxes, the numerical values 
computed for these quantities concur with the analytic solution of the discrete 
ordinate’s equation. Numerical results are given and compared with the traditional fine-
mesh DD method, the spectral nodal method, spectral Green’s function (SGF) and the 
FN method to illustrate the method’s numerical accuracy. 

 

Keywords: Multigroup neutron transport theory; Anisotropic scattering; Numerical 
nodal methodology; Fixed-source discrete ordinates problems; Computational 
modeling; One–dimensional slab geometry. 
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1. INTRODUCTION 
 
Several searches (GARCIA and SIEWERT, 1983; LAWRENCE, 1986;  BARROS, 

1990; BARROS and LARSEN, 1990; ABREU, 1996; YAVUZ, 2014) have been performed 

on the accurate (numerical) solution of the coarse-mesh methods for Cartesian geometry 

discrete ordinates (𝑆𝑁)  transport problems, which approximates the linear Boltzmann 

transport equation describing the transport of neutrons in a nuclear reactor (DUDERSTADT 

and MARTIN, 1979; LEWIS and MILLER, 1993), and in radiation shields problems. These 

researches and some others have made possible the development of deterministic 

numerical methods for obtaining accurate computational solutions to the radiation shields 

problems, global reactor calculations, and other applications. 

A primary goal of computational neutron transport is the reliable prediction of 

neutron production and loss rates (DUDERSTADT and MARTIN, 1979; LEWIS and 

MILLER, 1993). In this context, were developed methods like the fine-mesh method DD 

(LEWIS and MILLER, 1993), the MOC, c.f., Method of Characteristics (ASKEW, 1972; 

JEVREMOVIC et al., 2001; MAZUMDAR and DEGWEKER, 2015) and the coarse-mesh 

SGF (BARROS, 1990; BARROS and LARSEN, 1990), as well as others (SILVA et al., 

2013). These numerical methods make possible nuclear computer modeling using a 

deterministic approach. They usually, less the MOC, use the formulation of discrete 

ordinates (𝑆𝑁)(LEWIS and MILLER, 1993) and the multigroup approximation to 

discretized the angular and the energy variables in the transport equation. The multigroup 

formulation is an approximation of the energy-dependent transport equation in which the 

energy variable is discretized into contiguous groups. The 𝑆𝑁 discrete ordinates scheme 

in slab geometry problems made a discretization of the angular variables in N 

directions (discrete ordinates) and used an angular quadrature set for the approximation 

of the integral source terms. The foundations of the DD method are given by the linear 

approximation of the neutron angular flux, where the value of the average angular flux at 

each node is the arithmetic mean of the angular fluxes at the spatial cell interfaces 

(LEWIS and MILLER, 1993). The SGF method, introduced by R.C. Barros and E.W. 

Larsen (BARROS, 1990; BARROS and LARSEN, 1990) in 1990; is a numerical method 

that is free from spatial truncation errors for a general one-group, slab geometry, discrete 

ordinates problems with linearly anisotropic scattering and a prescribed internal source. 

This method is based on the use of the neutral particle balance equations, together with a 

non-standard auxiliary equation that contains a Green’s function (BARROS and 
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LARSEN, 1990). The unknowns are the cell-edge and cell average angular fluxes, the 

numerical values computed for these quantities are the same as the analytic solution of 

the discrete ordinate’s equation (BARROS and LARSEN, 1990). 

In an earlier paper (OLIVA et al., 2016; OLIVA et al., 2018), a numerical method was 

proposed for obtaining numerical solutions free from spatial truncation errors for all spatial 

cell sizes, one group and multigroup energy formulations in slab geometry problems 

with isotropic scattering and fixed-source. In the present paper, we extend the 

formulation of the numerical nodal method Spectral Deterministic Method (SDM) (OLIVA 

et al., 2016; OLIVA et al., 2018), to solve problems in one-dimension slab geometry, in the 

formulation of discrete ordinates (𝑆𝑁), considering an arbitrary anisotropic scattering of 

order L in homogeneous and heterogeneous domains with a prescribed interior source. 

The SDM method solves the analytic expression for the angular flux, instead of 

using the neutral particle balance equations together with the auxiliary equations for 

the cell averages fluxes. It uses the boundary conditions or estimates of the incoming 

angular fluxes in a node to determine the angular fluxes outgoing in the direction of the 

transport sweep. These estimates of the outgoing fluxes can vary from one region to the 

next if the material parameters between the regions are different. 

This paper is organized as follows: Section 2 presents the spectral analysis of 

multigroup transport equations in discrete ordinates formulation. In Section 3, it is 

described the iterative methodology of the multigroup Spectral Deterministic Method 

(SDM) for heterogeneous geometry. Numerical results for one group linearly anisotropic 

scattering and an arbitrary anisotropic scattering of order L multigroup 𝑆𝑁 problems are 

given in Section 4. A brief discussion of the results and suggestions for future work are 

presented in Section 5. 

 
2. MATHEMATICAL PRELIMINARIES 

 
This section exhibit the spectral analysis of neutron transport equation spatially and 

angular discretized in the multigroup formulation with anisotropic scattering of order L. 

Considering an arbitrary spatial grid Γ in the domain D, with length H as shown in Fig. 1, 

where each spatial node 𝛤𝑗 has a width ℎ𝑗 and constant cross sections 𝜎𝑠
𝑔′→𝑔

(𝑙)𝑗
 e 𝜎𝑇𝑔

𝑗
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Source: The author, 2016. 

Figure 1: Spatial grid 𝛤𝑗 in a one-dimensional domain D with length H. 

The multigroup 𝑆𝑁 one-dimensional neutron transport equations with anisotropic 

scattering for a Cartesian geometry, defined in an arbitrary node 𝛤𝑗 has the form 

𝜇𝑚

𝑑

𝑑𝑥 
𝜓𝑚,𝑔 (𝑥) + 𝜎𝑇𝑔

𝑗
𝜓𝑚,𝑔 (𝑥)

1

2
∑(2𝑙 + 1)𝑃𝑙

𝐿

𝑙=0

(𝜇𝑚) ∑ 𝜎𝑠
𝑔′→𝑔

(𝑙)𝑗
∑ 𝑃𝑙(𝜇𝑛)𝜔𝑛

𝑁

𝑛=1

𝐺

𝑔′=1

𝜓𝑛,𝑔′(𝑥) + 𝑄𝑔
𝑗
 , 

𝑙 = 0 ∶ 𝐿, 𝑚 = 1: 𝑁, 𝑔 = 1 = 𝐺, 𝑥
𝑗−

1

2

≤ 𝑥 ≤ 𝑥
𝑗+

1

2

.  (1) 

In Eq. (1), we used the standard notation, where 𝜓𝑚,𝑔 (𝑥) represents the angular 

flux of particles traveling in the discrete ordinates’ direction 𝜇𝑚 for each energy group, 

N is the order of the Gauss-Legendre quadrature set (LEWIS and MILLER, 1993). The 

number of energy groups is represented by G and the geometric size of the problem by x, 

where 𝑥 ∈  𝛤. For each region analyzed, 𝜎𝑇𝑔

𝑗
 describe the total macroscopic cross-

section of the 𝑔-th group; which includes all possible interactions, 𝜎𝑠
𝑔′→𝑔

(𝑙)𝑗
 is the 𝑙′th-

order component of the macroscopic 𝑔-th differential scattering cross section from 

group 𝑔′ to group 𝑔. The remaining symbols in Eq. (1) are the order of scattering 

anisotropy 𝐿; the Legendre polynomial of order 𝑙, 𝑃𝑙(𝜇𝑚); the angular weight for 

direction 𝜇𝑚, 𝜔𝑛 and the constant isotropic source in the energy group 𝑔, 𝑄𝑔
𝑗
. 

The analytic nodal general solution of the system of equations (1) has the form: 

𝜓𝑚,𝑔 (𝑥) =  𝜓𝑚,𝑔 
ℎ (𝑥) + 𝜓𝑚,𝑔 

𝑝
 , 𝑥 ∈  𝛤. (2) 

The superscript 𝑝 denotes the particular solution with fixed-source and ℎ 

indicates the homogeneous component of the local general solution, which satisfies 

the system of Eq. (1). 

To determine the homogeneous solution 𝜓𝑚,𝑔 
ℎ , we first set 𝑄𝑔

𝑗
= 0, and then 

seek for elementary solutions of the form 

𝜓𝑚,𝑔 (𝑥) = 𝑎𝑚,𝑔(𝜗)𝑒

−(𝑥−𝑥
𝑗−

1
2

)

𝜗 ,                          𝑚 = 1: 𝑁, 𝑔 = 1: 𝐺, 𝑥 ∈ 𝛤𝑗,  (3).; 
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where 
j 1/ 2x −

represents the left node-edge boundary of arbitrary node 𝛤𝑗. Substituting 

Eq. (3) in homogeneous part of Eq. (1), we obtain the eigenvalue problem 

∑
∑

𝜎𝑇𝑔

𝑗

𝜇𝑚

𝑁

𝑛=1

[𝛿𝑚,𝑛𝛿𝑔′𝑔 − ∑
(2𝑙 + 1)𝜎𝑠

𝑔′→𝑔

(𝑙)𝑗

2𝜎𝑇𝑔

𝑗

𝐿

𝑙=0

𝑃𝑙(𝜇𝑚)𝑃𝑙(𝜇𝑛)𝜔𝑛] 𝑎𝑛,𝑔′(𝜗) =  
1

𝜗
𝑎𝑚,𝑔(𝜗),

𝐺

𝑔′=1

 

𝑚 = 1: 𝑁, 𝑔 = 1: 𝐺, (4) 

where 

𝛿𝑎,𝑏 = {
1 𝑓𝑜𝑟 𝑎 = 𝑏,
0 𝑓𝑜𝑟 𝑎 ≠ 𝑏,

 

is defined as the Kronecker delta. 
This eigenvalue problem can be written in a compact notation as: 

𝐴𝒂 =
1

𝜗
𝒂,                                                             (5) 

where 𝐴 is a real square matrix with 𝐺𝑁 𝑥 𝐺𝑁 order. 

The Eq. (5) constitutes the matrix representation of a homogeneous system of 

𝐺𝑁 𝑥 𝐺𝑁 linear equations with the unknown eigenvectors 𝑎(𝜗𝑘), 𝑘 = 1: 𝑁, which have 

𝐺𝑁 components that correspond to the eigenvalues 𝜗𝑘. Due to the symmetry of the 

Gauss-Legendre quadrature sets used in slab geometry with even 𝑁, the resulting 

polynomial equation has only even powers of 𝜗𝑘, therefore the eigenvalues 𝜗 used will 

appear in pairs (BARROS and LARSEN, 1990). For fixed-source problems, which are the 

topic of the present work, these 𝐺𝑁 eigenvalues 𝜗𝑘 are real numbers. 

The particular solution 𝜓𝑚,𝑔 
𝑝

 within the node 𝛤𝑗 , is considered spatially constant for 

each energy group because of the sources 𝑄𝑔
𝑗
 in each region are assumed to be uniform 

and isotropic. Accordingly, by substitute the expression 𝜓𝑚,𝑔 
𝑝

 in Eq. (1) the particular 

solution takes the form 

∑ ∑ (𝜎𝑇𝑔

𝑗
𝛿𝑚,𝑛𝛿𝑔′𝑔 −

1

2
∑(2𝑙 + 1)𝜎𝑠

𝑔′→𝑔

(𝑙)𝑗
𝑃𝑙(𝜇𝑚)𝑃𝑙(𝜇𝑛)𝜔𝑛

𝐿

𝑙=0

) 𝜓𝑚,𝑔 
𝑝

𝑁

𝑛=1

𝐺

𝑔′=1

= 𝑄𝑔
𝑗

, 

𝑗 = 1: 𝐽,      𝑚 = 1: 𝑁,      𝑔 = 1: 𝐺. (6) 

Therefore, the general solution 𝜓𝑚,𝑔 (𝑥) for the 𝑆𝑁 equations for 𝐺 energy groups in 

𝛤𝑗 given by Eq. (2), can be written in the following form: 
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𝜓𝑚,𝑔 (𝑥) =  ∑ 𝛼𝑘𝑎𝑚,𝑔(𝜗𝑘)

𝐺𝑁

𝑘=1

𝑒

−(𝑥−𝑥
𝑗−

1
2

)

𝜗𝑘 + 𝜓𝑚,𝑔
𝑝     , 

 𝑚 = 1: 𝑁,      𝑔 = 1: 𝐺,      𝑘 = 1: 𝐺𝑁,      𝑥 ∈ 𝛤𝑗 (7) 

where 𝛼𝑘 are arbitrary constants to be determined from the boundary conditions 

established for each problem to be analyzed and 𝜓𝑚,𝑔 
𝑝

 represent the particular solution 

obtained from Eq. (6). 

 

3.THE MULTIGROUP SPECTRAL DETERMINISTIC METHOD(SDM) FOR 
HETEROGENEOUS PROBLEMS WITH L'TH ORDER ANISOTROPIC SCATTERING 
 

In this section, the Spectral Deterministic Method (SDM)(OLIVA et al., 2016; OLIVA 

et al., 2018) and the iterative procedure to solve the neutron transport equation using the 

SDM method for heterogeneous problems is presented. Let us consider the 

heterogeneous slab represented in Fig. 1. This slab is divided into local sub-regions, which 

we refer to as spatial nodes 𝛤𝑗. In each node, the macroscopic cross sections, and the 

source 𝑄𝑔
𝑗
 are considered uniform, the spatial width of 𝛤𝑗 is denoted by ℎ𝑗.Therefore, 

every node can be considered as a homogeneous material region. 

To begin, we consider Eq. (1), defined on the first homogeneous node 𝛤1 of the 

spatial grid shown in Fig. 2, 

 

Source: The author, 2016. 

Figure 2: A heterogeneous slab of thickness H. 

and considering 

𝜓𝑚,𝑔 (𝑥) = {
𝑓𝑚,𝑔 𝑓𝑜𝑟 𝑥 = 0,

𝑝𝑚,𝑔 𝑓𝑜𝑟 𝑥 = 𝐻,
 

as (prescribed) boundary conditions on the analyzed domain.  The general solution 

𝜓𝑚,𝑔 (𝑥), for Eq. (1) is given by Eq. (7). In order to solve Eq. (1), as shown in Section 2, 

we first obtain the numerical values for the eigenvectors 𝑎𝑚,𝑔(𝜗𝑘) and the eigenvalues 𝜗𝑘 

solving Eq. (4) in the analyzed material zone. The particular solution 𝜓𝑚,𝑔 
𝑝

 is obtained 
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solving Eq. (6), is considered spatially constant for each group within the node 𝛤1, once the 

sources are assumed to be uniform and isotropic in the analyzed region. 

Now, can proceed to calculate the 𝛼𝑘 parameters using Eq. (7) and the pre-

established boundary conditions in node 𝛤1 which are used as the initial estimates of the 

incoming angular fluxes in node left side, Fig. 3, black arrows. The initial estimates for the 

incoming angular fluxes in node right edge are shown with dashed arrows on Fig. 3. 

 

Source: The author, 2016. 

Figure 3: Incoming fluxes at node 𝛤1. 

After obtained the 𝛼𝑘 parameters can perform the calculations of the outgoing fluxes 

at node output (dotted arrows), Fig. 4, also using Eq. (7). 

 

Source: The author, 2016. 

Figure 4: Incoming and outgoing fluxes at node 𝛤1. 

Applying continuity conditions, the outgoing angular fluxes of all energy groups at the 

right interface of the node 𝛤1, are used as the initial approximation for the incoming angular 

fluxes on the left side of the adjacent cell 𝛤2 (dashed arrows emerging from the node 𝛤1, in 

Figure 5). The incoming angular fluxes from the right edge of the node 𝛤2 continues as an 

initial approximation, (dashed arrows, in the right boundary of the node in Figure 5). With 

the incoming angular fluxes of the node 𝛤2, the parameters 𝛼𝑘 of this node can be 

estimated and the outgoing angular fluxes calculated (dotted arrows in Figure 5). 

 

  Source: The author, 2016. 

Figure 5: Incoming and outgoing fluxes at node 𝛤2. 
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Continuing the movement from left to right, using Eq. (7), to determine the  

parameters and outgoing angular fluxes on the remaining cells, for 𝜇𝑚 > 0 and 𝜇𝑚 < 0 

directions, Fig. 6, until x = H. The incoming angular fluxes in 𝛤3 cell right cell-edge are the 

prescribed boundary conditions. 

 

 

Source: The author, 2016. 

Figure 6: Incoming and outgoing fluxes in the heterogeneous slab. 

This iterative process is performed until the prescribed stopping criterion of the 

maximum norm for the relative deviation between two consecutive estimates for the group 

scalar fluxes in the interface of the regions, 𝛷𝑔, does not exceed a pre-established value 

𝜀. This relative deviation is calculated using the equation 

𝑚𝑎𝑥
1 ≤ 𝑗 ≤ (𝐽 + 1) |

𝜱
𝒈,𝒋−

𝟏
𝟐

𝒊 −𝜱
𝒈,𝒋−

𝟏
𝟐

𝒊−𝟏

𝜱
𝒈,𝒋−

𝟏
𝟐

𝒊 | ≤ 𝜀,     𝑔 = 1: 𝐺,    (9) 

where (𝜱
𝒈,𝒋−

𝟏

𝟐

𝒊 − 𝜱
𝒈,𝒋−

𝟏

𝟐

𝒊−𝟏 ) is the difference between the scalar flux vector for the  (𝑖 − 1)'st 

previous iteration and the 𝑖′th iteration which has just been executed, and 

𝛷𝑔(𝑥) =
1

2
∑ 𝜓

𝑛,𝑔 
(𝑥)𝜔𝑛

𝑁
𝑛=1 ,      (10) 

gives us the scalar flux for each 𝑔′th group. 

 

4. NUMERICAL RESULTS 
 

The first study case is a homogeneous slab with thickness H = 100 cm 

(DUDERSTADT and MARTIN, 1979). In this model problem, one group, no interior source, 

linearly anisotropic scattering transport problem is studied. The boundary conditions and 

macroscopic cross sections are shown in Fig. 7. 
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Source: The author, 2016. 

  Figure 7: Model-Problem No.1. 
 

We solve this problem using the SDM method, with the 𝑆2, 𝑆4, 𝑆8 Gauss-Legendre 

quadrature set with a varying number of spatial cells (BARROS and LARSEN, 1990). To 

compare our solution, we use the results reported by Barros and Larsen in (BARROS and 

LARSEN, 1990) for the SGF method, using one-cell block inversion and the results for the 

fine-mesh DD method is used as a reference in all cases. The cell interfaces scalar fluxes 

at 𝑥 = 0, 𝑥 = 50 and 𝑥 = 100 are presented in Tables 1-3 for the SGF and SDM 

methods. In each table, the numbers in parentheses belong to the SGF method. For each 

case, the number of iterations required to achieve a stopping criterion of 𝜀 = 10−7 is also 

listed. 

The DD method reaches the fine-mesh at 400 nodes. For this case, we consider that 

mesh size meets our fine mesh parameters, because the values for scalar fluxes in the 

seventh decimal place do not have a significant variation and match with the established 

convergence criteria 10−7. 

Table 1: Scalar Flux a
  using S2 angular quadrature at the homogeneous problem.  

Number  
Φ(0) Φ(50) Φ(100) 

Number of  

of Cells Iterations 

400 8,1726E-01 1,6991E-02 1,2918E-04 376 

100 
8,1726E-01 1,6991E-02 1,2918E-04 376 

8,1726E-01 1,6991E-02 1,2918E-04 72 

50 
8,1726E-01 1,6991E-02 1,2918E-04 198 

8,1726E-01 1,6991E-02 1,2918E-04 64 

20 
8,1726E-01 1,6991E-02 1,2918E-04 85 

8,1726E-01 1,6991E-02 1,2918E-04 49 

10 
8,1726E-01 1,6991E-02 1,2918E-04 47 

8,1726E-01 1,6991E-02 1,2918E-04 36 

4 
8,1726E-01 1,6991E-02 1,2918E-04 25 

8,1726E-01 1,6991E-02 1,2918E-04 24 

2 
8,1726E-01 1,6991E-02 1,2918E-04 19 

8,1726E-01 1,6991E-02 1,2918E-04 19 

     a Scalar Flux: cm-2 s-1,       b DD Method,       c SDM Method,       d SGF Method, 
       e Read: 1.6991 x 10-2. 

  Source: The author, 2016. 
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Table 2: Scalar Flux a using S4 angular quadrature at the homogeneous problem.  

Number  
Φ(0) Φ(50) Φ(100) 

Number of  

of Cells Iterations 

400 8,2226E-01 1,6538E-02 1,2353E-04 376 

100 
8,2226E-01 1,6538E-02 1,2353E-04 340 

8,2226E-01 1,6538E-02 1,2353E-04 83 

50 
8,2226E-01 1,6538E-02 1,2353E-04 179 

8,2226E-01 1,6538E-02 1,2353E-04 65 

20 
8,2226E-01 1,6538E-02 1,2353E-04 78 

8,2226E-01 1,6538E-02 1,2353E-04 45 

10 
8,2226E-01 1,6538E-02 1,2353E-04 43 

8,2226E-01 1,6538E-02 1,2353E-04 34 

4 
8,2226E-01 1,6538E-02 1,2353E-04 23 

8,2226E-01 1,6538E-02 1,2353E-04 23 

2 
8,2226E-01 1,6538E-02 1,2353E-04 18 

8,2226E-01 1,6538E-02 1,2353E-04 18 

       a Scalar Flux: cm-2 s-1,          b DD Method,          c SDM Method,          d SGF Method, 
          e Read: 1.6538 x 10-2. 

    Source: The author, 2016. 
 

Table 3: Scalar Flux a using S8 angular quadrature at the homogeneous problem. 

Number  
Φ(0) Φ(50) Φ(100) 

Number of  

of Cells Iterations 

400 8,2284E-01 1,6470E-02 1,2250E-04 376 

100 
8,2284E-01 1,6470E-02 1,2250E-04 329 

8,2284E-01 1,6470E-02 1,2250E-04 77 

50 
8,2284E-01 1,6470E-02 1,2250E-04 173 

8,2284E-01 1,6470E-02 1,2250E-04 61 

20 
8,2284E-01 1,6470E-02 1,2250E-04 75 

8,2284E-01 1,6470E-02 1,2250E-04 43 

10 
8,2284E-01 1,6470E-02 1,2250E-04 42 

8,2284E-01 1,6470E-02 1,2250E-04 32 

4 
8,2284E-01 1,6470E-02 1,2250E-04 23 

8,2284E-01 1,6470E-02 1,2250E-04 22 

2 
8,2284E-01 1,6470E-02 1,2250E-04 17 

8,2284E-01 1,6470E-02 1,2250E-04 17 

       a Scalar Flux: cm-2 s-1,          b DD Method,          c SDM Method,          d SGF Method, 
          e Read: 1.6470 x 10-2. 

    Source: The author, 2016. 
 

In the numerical results given in Tables 1 - 3, we observe that as the spatial cells 

become coarse, the numerical solution corresponding to the points at  𝑥 = 0, 𝑥 = 50, and 

𝑥 = 100 are the same for the SGF and SDM methods using the same quadrature sets. 

Thus, the solution to the problem using both methods is free from all spatial truncation 

errors. We also note that as the grid becomes coarser, the number of iterations necessary 
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to achieve the stopping criterion 𝜀 = 10−7 becomes smaller for both methods. 

The second study case, is a twenty energy groups (G = 20), anisotropic scattering of 

order L = 10, no interior source problem on a five material zones slab of thickness 𝐻 = 20 

cm (GARCIA and SIEWERT, 1983). According to (GARCIA and SIEWERT, 1983), the 

multilayer slab has an isotropic incoming in the fastest energy group (𝑔 = 1) on the left 

boundary for 𝜇𝑚 > 0, 

 

𝜓𝑚,𝑔(𝑥) = {
𝜓𝑚,𝑔(0) = 𝛿𝑔,1, 𝜇

𝑚
> 0, 𝑔 = 1: 20,

𝜓𝑚,𝑔(𝐻) = 0, 𝜇
𝑚

< 0, 𝑔 = 1: 20.
    (11) 

The thickness of each material zone is defined by ℎ𝑗  =  (𝑗 +  1)𝑐𝑚, 𝑗 =  1: 5. The 

fictitious group total macroscopic cross sections and the scattering cross sections are 

defined as 

𝜎𝑇𝑔

𝑗
= (

𝑗+20

21
)

5

[
𝑔

10
− 0.15𝛿𝑔,5 − 0.15𝛿𝑔,10] ,    𝑔 = 1: 20                          (12) 

and 

𝜎𝑆𝑔

(𝑙)𝑗
= (

𝑗+20

21
)

5

[
𝑔′

100(𝑔−𝑔′+1)
] ℎ𝑔𝑔′

𝑙     ,    𝑔 = 1: 𝑔,   𝑔 = 1: 20,   𝑙 = 0: 10,        (13) 

where 

ℎ𝑔𝑔′ = 0.7 −
𝑔+𝑔′

200
                        (14) 

In this problem were evaluated the albedos (𝐴∗) and the transmission factors (𝐵∗), 

which are defined by (GARCIA and SIEWERT, 1983) respectively as 

𝐴∗ = 2 ∑ |𝜇𝑛|𝜔𝑛𝜓𝑛,𝑔
𝑜𝑢𝑡(0),    𝑔 = 1: 𝐺𝜇𝑚>0 ,                      (15) 

where 𝜓𝑛,𝑔
𝑜𝑢𝑡(0) represent the outgoing flux from the left boundary at 𝑥 = 0 cm, and 

𝐵∗ = 2 ∑ |𝜇
𝑛
|𝜔𝑛𝜓

𝑛,𝑔
𝑜𝑢𝑡(𝐻),    𝑔 = 1: 𝐺𝜇𝑚>0 ,                      (16) 

where 𝜓𝑛,𝑔
𝑜𝑢𝑡(𝐻) represent the outgoing flux from the right boundary at 𝑥 = 20 cm. 

In Table 4 are shown the results for the 𝑆128 Gauss-Legendre quadrature set of the 

group's albedos, 𝐴𝑔
∗ , and the group transmission factors, 𝐵𝑔

∗, together with the reference 

results generated with the 𝐹𝑁 method in (GARCIA and SIEWERT, 1983). The prescribed 

stopping criterion is established in 10−10 (ASKEW, 1972). 
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Table 4: Group Albedos 𝐴𝑔
∗  and the Transmission Factors 𝐵𝑔

∗ 

  𝐹𝑁 method   𝑆𝐷𝑀 method 

Groups 𝐴𝑔
∗  𝐵𝑔

∗   𝐴𝑔
∗  𝐵𝑔

∗ 

1 5.8809E-03 1.0453E-02   5.8853E-03 1.0453E-02 

2 2.2791E-03 1.9993E-04  2.2805E-03 1.9993E-04 

3 1.2939E-03 6.9012E-05  1.2947E-03 6.9016E-05 

4 8.6280E-04 3.5393E-05  8.6338E-04 3.5398E-05 

5 8.5170E-04 3.5350E-05  8.5213E-04 3.5355E-05 

6 4.9662E-04 1.4899E-05  4.9698E-04 1.4904E-05 

7 3.9706E-04 1.0716E-05  3.9737E-04 1.0721E-05 

8 3.2763E-04 8.0863E-06  3.2789E-04 8.0907E-06 

9 2.7671E-04 6.3202E-06  2.7694E-04 6.3246E-06 

10 2.7956E-04 6.1271E-06  2.7977E-04 6.1320E-06 

11 2.0989E-04 4.1837E-06  2.1008E-04 4.1881E-06 

12 1.8491E-04 3.4892E-06  1.8508E-04 3.4935E-06 

13 1.6476E-04 2.9545E-06  1.6492E-04 2.9587E-06 

14 1.4814E-04 2.5332E-06  1.4829E-04 2.5374E-06 

15 1.3423E-04 2.1953E-06  1.3436E-04 2.1994E-06 

16 1.2242E-04 1.9200E-06  1.2254E-04 1.9240E-06 

17 1.1229E-04 1.6927E-06  1.1241E-04 1.6967E-06 

18 1.0352E-04 1.5029E-06  1.0363E-04 1.5068E-06 

19 9.5859E-05 1.3428E-06  9.5965E-05 1.3467E-06 

20 8.9125E-05 1.2064E-06   8.9225E-05 1.2103E-06 

Source: The author, 2016. 
 

Table 5, shows the relative deviation of the SDM results estimated as, 

𝜀 = (
𝑉𝑟 − 𝑉

𝑉𝑟
) × 100% 

where 𝑉𝑟 is the reference value of the 𝐹𝑁 method (ASKEW, 1972), and V is the quantity 

generated by the 𝑆𝐷𝑀 method for the 𝑆128 Gauss-Legendre quadrature set. 

 

Table 5: Relative deviation 

ε 

𝐴𝑔
∗  𝐵𝑔

∗ 

7.5478E-02 3.1570E-03 

6.0445E-02 7.9528E-04 

6.3629E-02 6.1569E-03 

6.7349E-02 1.3299E-02 

5.0053E-02 1.4122E-02 
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7.3146E-02 3.2009E-02 

7.7492E-02 4.3421E-02 

7.9443E-02 5.4989E-02 

8.3011E-02 6.9522E-02 

7.4692E-02 7.9591E-02 

8.9666E-02 1.0540E-01 

9.2391E-02 1.2405E-01 

9.5515E-02 1.4203E-01 

1.0130E-01 1.6421E-01 

9.7892E-02 1.8460E-01 

1.0023E-01 2.0882E-01 

1.0248E-01 2.3591E-01 

1.0417E-01 2.6266E-01 

1.1013E-01 2.8872E-01 

1.1181E-01 3.2326E-01 

       Source: The author, 2016. 
 

As can be seen in Table 5, the relative deviation of the SDM results are minimal, 

|ε| < 1%, concerning the reference results of (GARCIA and SIEWERT, 1983). The 

existing differences are due to finite computational arithmetic. 

 

5. DISCUSSION 

An analytic coarse-mesh numerical method, 𝑆𝐷𝑀, for computational modeling of 

neutral particles in slab geometry with an arbitrary degree of anisotropy have been 

presented. The multigroup 𝑆𝐷𝑀 discretization scheme preserves the general analytic 

solution of the multigroup 𝑆𝑁 equation in each spatial node converges to numerical results 

that are continuous across each node interface and satisfies the external boundary 

conditions whether the mesh size order or quadrature set used. The resulting numerical 

solution is free of spatial truncation errors, same as the 𝑆𝐺𝐹 method while the fine-mesh 

𝐷𝐷 method solution is not. 

The iterative numerical strategy used for this method, when compared with the 𝐷𝐷 

method, allows reaching the convergence faster. The iteration numbers required to 

converge the same grid problem with the same quadrature sets for both the 𝑆𝐺𝐹 method 
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with the one-cell block inversion and the 𝑆𝐷𝑀 are equivalent, despite our route or 

iterations are substantially different than the transport sweeps employed by the 𝐷𝐷, 

𝑆𝐺𝐹and 𝐹𝑁 methods. Another advantage presented for this method when compared with 

the other methods used in this paper is the simplification for the solution algorithm of the 

discretized equations of the 𝑆𝑁 problems. The 𝑆𝐷𝑀 method exhibit the same accuracy, 

stability, and consistency presented by the other methods 𝐷𝐷, 𝑆𝐺𝐹and 𝐹𝑁 for both study 

cases analyzed. 

6. FINAL CONSIDERATIONS 

 

Based on the results presented in the study, we conclude with the comment that the 

𝑆𝐷𝑀 method could be applied in multidimensional geometries, due to the solution 

algorithm simplification for slab geometry problems. Our goal is extending the study and 

apply the present analytical-numerical method to 𝑋, 𝑌 geometry multigroup problems with 

anisotropic scattering and multidimensional calculations in rectangular geometry, by using 

transverse integration with prescribed approximations for the transverse leakage terms 

(BARROS, 1990). For example, if we consider an 𝑆𝑁 problem in a two-dimensional 

geometry (𝑥, 𝑦), as in the 𝑆𝐺𝐹 method, we could integrate the 𝑆𝑁 equation in the 𝑥 -

direction and then over the 𝑦 direction, driving us to the transverse leakage terms to the 

source side to obtain a system of two one dimensional 𝑆𝑁 equations (BARROS, 1990), 

and then it can be solved using the same methodology used in this paper for one 

dimensional. If successful, similar ideas, can also be implemented for three-dimensional 

problems. 

We plan to report on the results of the analytic-numerical methods after they have 

been implemented and thoroughly tested. 
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