
 

 

 178 

ARTIGO ORIGINAL 
<< Recebido em: 30/11/2020     Aceito em: 13/12/2020. >> 

 

DOI: 10.18605/2175-7275/cereus.v12n4p178-190 

 
 

Solution of an Inverse Heat Transfer Problem for Treatment of Tumors by 
Hyperthermia 

 
Solução de um Problema de Transferência de Calor para o Tratamento de Tumores por 
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ABSTRACT 

 

In the last decades, some treatments for different types of cancer have been proposed 
and studied. Among these, we can cite radiotherapy, chemotherapy, cryosurgery and 
hyperthermia. In general, hyperthermia is the heating of tumor region for a certain 
period of time so that healthy cells remain unchanged, while pathological cells are 
destroyed. From the mathematical point of view, the phenomenon of heat transfer in 
the region of interest can be represented by a partial differential equation that is 
dependent on characteristics related to the material used for heating and the cell 
properties where the carcinoma is located. This contribution aims to formulate and 
solve inverse problems for the determination of geometry and source term during the 
hyperthermia process. For this purpose, the direct problem is solved considering the 
Normal Collocation Method and the inverse problem is solved considering the 
Differential Evolution algorithm. The results obtained demonstrate that the proposed 
methodology is able to obtain good estimates in all the proposed case studies, proving 
to be an interesting alternative to solve this type of problem. 

 

Keywords: Hyperthermia, Heat Transfer, Direct Problem, Inverse Problem, Differential 
Evolution. 

 

RESUMO 

 

Nas últimas décadas, inúmeros tratamentos para os diferentes tipos de câncer têm 
sido propostos e estudados. Dentre estes, pode-se destacar a radioterapia, a 
quimioterapia, a criocirurgia e a hipertermia. Especificamente em relação à 
hipertermia, o procedimento consiste no aquecimento da região do tumor durante um 
determinado intervalo de tempo de modo que as células normais tendem a 
permanecer inalteradas, enquanto as células patológicas são destruídas. Do ponto de 
vista matemático, o fenômeno de transferência de calor na região de interesse pode 
ser representado por uma equação diferencial parcial que é dependente das 
características do material utilizado para o aquecimento e das propriedades das 
células onde o carcinoma se localiza. A presente contribuição tem por objetivo 
formular e resolver problemas inversos para a determinação da geometria e do termo 
fonte durante o processo de hipertermia. Para essa finalidade, o problema direto é 
resolvido considerando o Método da Colocação Normal e o problema inverso é 
resolvido considerando o algoritmo de Evolução Diferencial. Os resultados obtidos 
demonstram que a metodologia proposta é capaz de obter boas estimativas em todos 
os estudos de caso propostos, configurando uma interessante alternativa para a 
resolução deste tipo de problema. 

 

Palavras-chave: Hipertermia, Transferência de Calor, Problema Direto, Problema 
Inverso, Evolução Diferencial. 
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1. INTRODUCTION 
 
Cancer is one of diseases that most attract the attention of scientific community due 

to large number of cases that arise every year, lethality rate and limited treatment options 

in some cases. In view of the types of cancerthat exist, several forms of treatment can be 

used, among them we can mention: surgical removal of the tumor, radiotherapy, 

chemotherapy, and drug administration (Hafid and Lacroix, 2017). These last three 

treatments have a particular characteristic, the side effects related to reduction of immunity 

(Singh and Kumar, 2014). 

As an alternative, both cryotherapy and hyperthermia procedures have been 

considered as treatment of certain cancer types, such as in the liver, lung and breast 

(Singh and Kumar, 2014).The cryotherapy consists of freezing diseased tissue in order to 

promote the reduction of cellular activity and, consequently, the elimination of cancer cells. 

On the other hand, the hyperthermia is theprocedure of increasing tumor temperature to 

stimulate blood flow, increase oxygenation and render tumor cells more sensitive to 

radiation, i.e., this approach aims the elimination of tumor cells by heating the region of 

interest (Suleman et al. 2020). Both approaches are minimally invasive procedures, i.e., 

damage to the surrounding healthy tissue and side effects can be minimized (Hafid and 

Lacroix, 2017).In general, these two procedures are performed by inserting a device into 

the tissue to be frozen or heated. For each type of device, a particular approach can be 

employed. For example, cryosurgery uses a gas, usually nitrogen, to cool the region of 

interest (Singh and Kumar, 2014). On the other hand, in hyperthermia, a conductive 

material is generally used to heat the region of interest (Andra et al., 1999).  

In relation to heating process of human body, it is known that the increase in 

temperature stimulates the immune system and, consequently, helps to eliminate 

unwanted organisms (Pennes, 1948). In the case of tumor treatment, when the affected 

area is heated, cancer cells deteriorate while healthy ones can be preserved, i.e., 

depending on the exposure time of the tissue and the temperature (usually between 40 

and 45 oC), healthy cells remain unchanged, while tumor cells tend to be destroyed. 

Temperatures up to 45–50 oC induce necrosis and contribute to the elimination of cancer 

tissue due to dehydration, thickening, and denaturation of intracellular proteins, as well as 

destroying cell membranes. Finally, temperatures between 50 and 100 oC causes 

coagulation necrosis.  (Olayiwola et al. 2012).  
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During the hyperthermia process, itis very important to control the temperature in the 

region of interest, in order to minimize possible damage to healthy tissues. In this case, to 

evaluate the effective destruction of a tissue, the integralof Arrhenius(Connors, 1990) must 

be computed. This allows to measure, indirectly, the level of cell destruction during this 

process (Behrouzkia et al. 2016). 

The hyperthermia procedure is indicated for carcinomas at initial stage, which can be 

associated with other types of treatment in order to increase the effectiveness and 

guarantee the total elimination of tumor (Zhu et al. 2012). For example, hyperthermia can 

be associated with radiotherapy to improve the control of the tumor sizewhile minimizing 

damage to healthy tissue (Jha et al. 2016). In addition, for certaincancer drugs, the 

hyperthermia treatment can be used to improve the absorptionand to accelerate chemical 

reactions in chemotherapy, i.e., this treatment becomes more effective and less toxic (Jha 

et al. 2016).As mentioned by Wust et al. (2002), the main side effects observed in 

hyperthermia are: pain at target site, bleeding, blood clots, infection, swelling, burns, 

blistering, and also cause damage to skin, nerves and muscles around the treated area. 

Among the different cancer treatments, hyperthermia seems to be the least 

employed in clinical practice (Coleman et al. 2009). One reason for this may be the 

difficulty in directing sufficient amounts of heat only to tumor tissue (Olayiwola et al. 2012). 

In practice, the effectiveness of this type of treatment depends on several factors, such as 

the maximum temperature reached, the total heating time and the tumor tissue properties 

(Coleman et al. 2009). 

The efficiency of tumors treatment by hyperthermia requires the knowledge of 

temperature distribution in order to minimize the side effects. In this context, due to the 

complexity of tissue structure and its high heterogeneity, the use of numerical models 

arises as a powerful tool for the prediction and control of temperature distribution in 

treatments for hyperthermia (Lamien, 2015). 

In this contribution, the objectiveis to formulate and solve inverse problems for the 

determination of geometry and source term during the hyperthermia process. The 

proposed methodology consists of associatingthe Normal Collocation Method (NCM), used 

to solve the direct problem, with the Differential Evolution (DE) algorithm, considered to 

solve the inverse problem. This work is structured as follows. In Section 2, the 

mathematical model that represents the process of interest is presented, as well as a brief 

description of the NCM. In Section 3, the DE algorithm is presented. The main steps of the 

proposed methodology are presented in Section 4. The results obtained with the solutionof 
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three case studies considering real experimental points are presented in Section 5. The 

conclusions are drawn in the last section. 

 

2. MATHEMATICAL MODELING 
 
Consider a heat source P concentrated within a small sphere of radius R, surrounded 

by a homogeneous medium, according to Fig. 1. Two regions of interest are depicted: (1) 

represents the interior of the sphere with radius r R, and (2) is defined by the 

homogeneous material outside of the sphere, given byR  r Rmax, where Rmax is the total 

size of the domain.In turn, the temperature sensors are defined at specific points in 

theradial domain. 
 

 

Figure 1. Schematic representation of the domain considered (Adapted from Andra 

et al. (1999)). 

 

The material used for heating (region 1) and the surrounding environment (region 2) 

are characterized by values of respective heat conductivities (λ), by their specific 

capacities (c) and densities (ρ).Due to the symmetryin relation to the center of the sphere, 

the temperature profile (T) can be assumed to be dependent only ontime (t) and radial 

position (r), i.e., the temperature is denoted by T(t,r). Considering that the surrounding 

environment represents a region with small size and homogeneity, with 

negligiblemetabolic generation and blood perfusion rate, this process can be modeled by 

the classical heat conduction equation. Mathematically, this process is represented, in 

spherical coordinates, by the following differential equations (Andra et al., 1999): 
 

 


  
    

   

21 1 1 ,    01 1 2

T T
c r P r R

t r rr
 (1) 

 


  
   

   

22 2 2 ,    2 2 max2

T T
c r R r R

t r rr
 (2) 
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where subscripts 1 and 2 represent regions (1) and (2), respectively, as shown in Fig. 1, 

valid for all t  0. 

To evaluate this model, it is considered that the initial temperature (t=0) for all spatial 

domain is equal to T0, i.e.: 
 

   (0, ) ,    01 0T r T r R  (3) 

   (0, ) ,    2 0 maxT r T R r R

 

(4) 
 

 

Due to the symmetry, the temperature in the center of the sphere (r = 0) is finite. 

Mathematically, this condition can be represented as: 
 

 
 



( ,0)1 0,    0
T t

t
r

 (5) 
 

For r Rmaxwe consider that the temperature is nearly equal to initial temperature of 

the process, i.e.: 
 

  ( , ) ,    02 max 0T t R T t  (6) 
 

 

Since the domain of this problem is characterized by two regions, the continuity for 

temperature and heat flow must be guaranteed atr equal to R, i.e.: 
 

  ( , ) ( , ),    01 2T t R T t R t  (7) 

 
 

 
 

 

( , ) ( , )1 2 ,    01 2
T t R T t R

t
r r

 

(8) 
 

To solve the forward problem, the Normal Collocation Method (NCM) is considered. 

In general, it is based on the definition of a surrogate function (generally a polynomial 

function), in which its numerical solution is evaluated by considering an arbitrary number of 

points (Villadsen and Stewart, 1967). For this purpose, the original equation must satisfy 

the approximation function at the points considered, as well as the initial and boundary 

conditions (if the test case is aboundary value problem). Thus, once the polynomial is 

defined, it is replaced in the original model, obtaining residuals for each point considered. 

Such residuals must be minimized. The algebraic system coming from this operation must 

be solved taking an appropriate numerical technique. The main steps for application of this 

approach are presented below (Laranjeira and Pinto, 2001): 

  Define the input parameters: mathematical model, initial-boundary conditions, and 

order (N) of the approximation (the polynomial has N+1 coefficients); 

  Define the collocation points (generally, these points are equally spaced);  
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  Replace the approximation function in the original differential model. Thus it is 

converted into an equivalent nonlinear equation. The approximation function mustbe 

satisfied according to the boundary conditions;  

  The resulting nonlinear  model is solved by using, for example, the Newton Method;  

  Verify if the obtained solution is sensitive in relation to theincrease of the degree of 

approximation. 

 

It is worth mentioning that the quality of the obtained results depends both on the 

approximation function considered and the number of collocation points. In this case, by 

increasing the number of collocation points does not necessarily imply the improvementof 

the obtained results. According to Villadsen and Michelsen (1978), this methodology is 

easy to be implemented even for highly nonlinear problems. 

 

 

3. INVERSE PROBLEM 
 

In order to solve the inverse problem, we consider the DE algorithm, proposed by 

StornandPrice (1995), to solve unconstrained single-objective optimization problems. In 

general, this heuristic approach is based on vector operations (addition and subtraction) to 

generate a potential candidate for solving general optimization problems. The procedure 

proposed in this algorithm consists of the following steps (Price et al. 2005): 
 

  Characterization of problem: objective function andconstraints (in this case, a 

penalization strategy is used to lead with this type of case study), vector of design 

variables and search space (domain of the problem);  

  DE parameters: population size (NP), number of generations, crossover probability 

(CR), perturbation rate (F) and a particular strategy considered for generation of 

mutant vector;   

  An initial population is randomly generatedwith NP candidates, ensuring that all 

individuals are within the feasible domain; 

  Each individual is evaluated according to objective function. The best candidate, in 

terms of value of this function, is taken to bethe current optimal solution;   

  While the number of generations is not met, three individuals(chosen randomly in 

the population) are selected (one is selected to be replaced and two other individuals 

to perform the vector subtraction). The difference between these two individuals is 

added to the third individual, weighted by a perturbation rate F. This procedure 
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representsthe mutation operator, and is repeated until a new population, with size NP 

is generated; 

  The crossover operator combines the characteristics of individuals from the original 

population of a given generation, with individuals resulting from the mutation. For 

each coordinate of the mutant vector, if a normally distributed random number in the 

range [0, 1] is less than CR, or if a particular coordinate of the mutant vector is 

selected at random, the corresponding coordinate is replaced in the individual of the 

original population. 

  In the selection step, the individuals resulting from the mutation and crossover 

operations are compared one by one with the individuals of the original population, in 

terms of the value of the objective function, in order to define the members of the 

next generation. 

 These proceduresare repeated until a stopping criterion (generally the number of 

generations) is satisfied. 

 

StornandPrice (1995) suggest a set of default parameters for initializing this 

algorithm. Typically, NP should be between 5 and 10 times the dimension of the problem 

to be solved. The perturbation rate F must be chosen in the range [0, 2] (a good initial 

value for this parameter is 0.5). The crossover probability CR should be a value close to 

one (0.8 may be a good initial choice). For the generation of potential candidates, 

StornandPrice (1995) proposed 10 strategies. Some of them are presented below: 
 

  rand/1:     ( )1 2 3X X F X X ; 

  rand/2:         ( )1 2 3 4 5X X F X X X X ; 

  best/1:    ( )2 3X X F X Xbest ; 

  best/2:        ( )2 3 4 5X X F X X X Xbest ; 

 

where  i  (i = 1, 2, ..., 5) represents the i-th position of the population (chosen randomly 

from [1, NP], all of which must be different from each other), and Xbest is the best solution 

in the current generation. In these relations, the kind of process may berandom or not (in 

this last case, the approach is calledbest), and 1 or 2 represents the number of pairs 

considered for the generation of a potential candidate. The complete description of all 

steps of the DE algorithm can be found in Storn and Price (1995) 
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4. METHODOLOGY 
 

The methodology proposed in this work consists of the following steps: 

 

  To solve the direct problem, a polynomial approximation with a degree equal to 10 

in the NCMisconsidered. In this case, 250 and 300 pointsequally spacedin radial and 

temporal directionsare used;  

  Three inverse problems (IP) are proposed: i) determination of the source term 

P(IP1); ii) determination of the radius R (IP2); and iii) determination of the source term 

P and radius R (IP3). For each problem, the following objective functions (OF) are 

defined: 

 

      

 


1 2 2

expPI min  , ,1 1

1 1

N N
calFO T t r T t ri j i j

P
i j

 (9) 

 

      

 


1 2 2

expPI min  , ,2 2

1 1

N N
calFO T t r T t ri j i j

R
i j  

(10) 

 

      

 


1 2 2

expPI min  , ,3 3
,

1 1

N N
calFO T t r T t ri j i j

P R
i j  

(11) 

 

where Texp(ti,rj) and Tcal(ti,rj) represent the experimental and calculated (simulated) 

temperature distributions at the coordinate points (ti,rj), respectively. N1 and N2 

represent the number of experimental points in temporal and radial directions, 

respectively. In each problem, the system of equations defined by Eqs. (1)-(8) is 

evaluated to obtain the temperature profiles; 

  For IP1, 0 P  10 (W/cm3) and R equal to 0.315 (cm) are considered. For IP2,  0.01 

R   1 (cm) and P is equals to 6.15 (W/cm3). Finally, for IP3, both P and R are not 

known, i.e., 0 P   10 (W/cm3) and 0.01 R   1 (cm); 

  In all applications, additional parameters are considered (Andra et al., 1999): T0 = 0 

oC, ρ1= 1.66 (g/cm3), c1 = 2.54 (J/(g K)), λ1 = 0.778×10-2(W/(K m)), ρ2 = 1 (g/cm3), c2 

= 3.72 (J/(g K)), λ2 = 0.642×10-2 (W/(K m)), Rmax = 1.5 (cm), and 0  t   300 (s);  

  The experimental points, required to formulate each IP, are taken fromAndra et al. 

(1999). These authors describe the experimental procedure used to heata region of a 

muscle tissue considered to represent small carcinomas in breast. To evaluate each 

of objective function, two sets of experimental pointsare considered. In the first,the 
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temperature sensors are located at r= (0.20475 0.3465 0.43785 0.5292 0.6237) (cm) 

and in the second,the temperature sensors are located at t = (6 22 45 101 196) (s);  

  DE Parameters: population size NP = 20, maximum number of generations equal 

to 50, crossover probability CR = 0.8, perturbation rate F = 0.8, rand/1/bin strategy 

(Storn and Price, 1995), and maximum number of generations as a stopping 

criterion. The DE algorithm is executed 20 times considering different initial seeds in 

random number generator. In each run, the number of objective function evaluations 

is 20+20×50. 
 

5. RESULTS AND DISCUSSIONS 
 

Table 1 presents the results obtained considering the proposed methodology for 

each inverse problem. At first, it is observed that DE, for the parameters defined in the 

previous section, is able to find good estimates for the design variables in all runs for each 

problem, given the value of the standard deviation obtained, i.e., the DE algorithm always 

converged to nearly the same point. 

 

 

Table 1. Results obtained for each inverse problem. 

 

  P (W/cm3) R (cm)                    OF (oC2) 

IP1 
Best 6.0515                   -  58.6299                   

Standard Deviation 3.0767×10-4 - 1,3205×10-4 

IP2 
Best - 0.3149  62.9705 

Standard Deviation - 1.4196×10-4 8.7028×10-5 

IP3 
Best 5.6763 0.3281 51.4430 

Standard Deviation 1.0824×10-3 1.3012×10-4 1.9776×10-3 

 

In case of the IP1, the value of the source term P estimated (P = 6.0515 W/cm3) 

agrees with that adopted by Andra et al. (1999) (which is P = 6.15 W/cm3) for the 

generation of temperature profiles during the treatment. Regarding the second inverse 

problem, the estimated radius (R = 0.3149 cm) is also in agreement with that used by 

Andra et al. (1999) (R = 0.315 cm). Finally, for the last IP, the results obtained by the 

proposed methodology (P = 5.6763 W/cm3 and R = 0.3281 cm) are also close to those 

adopted by Andra et al. (1999) (P = 6.15 W/cm3 and R = 0.315 cm). For the last case, 

greater distances between the values are observed,in comparison to the first two IPs. This 

is due to need for simultaneous adjustment of the models to the experimental points and, 
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regarding the inherent errorof the process, both the parameters P and R suffer small 

deviations when compared to individual adjustments. However, it is important to note that, 

as expected, the increase in the number of design variables in the last IP reduces the 

value of OF in comparison to the first two cases. This is due to the fact that the number of 

degrees of freedomhas increased, which allows, in practice, the best concordance 

between experimental and simulated profiles. 

Figures 2(a), 2(c) and 2(e) present the temperature profiles as a function of time, 

according to the sensors located at r = [0.20475 0.3465 0.43785 0.5292 0.6237] (cm). 

Figures 2(b), 2(d) 2(f) present the temperature profiles as a function of radius considering 

some time instants t = [6 22 45 101 196] (s). For each IP, a good agreement between 

experimental and simulated profiles is observed. This demonstrates that the proposed 

methodology is able to find a set of parameters for the purpose of minimizing each 

objective function. From the physical point of view, it can be seen in Fig. 2(a) that close to 

the center of the sphere, the temperature increases with time. On the other hand, for 

points located above the radius of the sphere (R = 0.315 cm), as the source term is equals 

to zero, the temperature is close to the boundary condition, i.e., T0 = 0 oC. The same 

behavior can be observed for Figs. 2(c) and 2(e). In Fig. 2(d) it is clear that the boundary 

conditions are met, i.e., at r = 0 cm, the heat flow is equal to zero (symmetry condition) and 

for r = Rmax cm, we have T0 = 0 oC. For a given radial position, when the time increases, 

the temperature also increases, indicating that the system is being heated. In this case, 

the system is heated in the domain defined between 0   r   Rmax (region (1)) and the 

tissue (region (2)), thus simulating the process of hyperthermia. 

 

6. CONCLUSIONS 

 

The present work aimed to formulate and solve inverse problems to represent the  

hyperthermia process considering a spherical heat source. For this purpose, three case 

studies were defined. The first was proposed to determine the source term, the second to 

determine the radius and the third to determine both source term and geometry. For the 

solution of the direct problem, the Normal Collocation Method was considered. In the case 

of the inverse problem, the Differential Evolution algorithm was used. From the obtained 

results it was possible to verify that the proposed methodology was able to obtain good 

estimates in all the proposed inverse problems, considering the good adjustment between 

the experimental and simulated profiles. 
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(a) Time Profile for the IP1. (b) Radial Profile for the IP1. 

 
 

(c) Time Profile for the IP2. (d) Radial Profile for the IP2. 

  
(e) Time Profile for the IP3. (f) Radial Profile for the IP3. 

 

Figure 2. Experimental and calculated temperature distributions for IP1, IP2 and IP3. 
 

It is important to note that the formulation and solution of this type of inverse problem 

allows obtaining parameters used for the study of hyperthermia process. In this case, 

establishing these parameters and the mathematical model, it is possible to simulate 
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different conditions in order to evaluate different strategies for tissue heating, as well as 

this can be coupled with other mathematical models for the characterization of thermal 

damage, and to formulate design problems to determine the time operation required to 

heat the tumor region. 

As a proposal for future work, an inverse problem described by fractional differential 

equations and considering terms related to metabolic generation rate and blood perfusion 

will be studied. In addition, the Arrhenius model for calculating thermal damagewill also be 

incorporated to the proposed model. 
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