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Solving the Turbine Balancing Problem Using a Metropolis Algorithm Hybridized 
with the Hooke-Jeeves Method 

Solucionando o problema de balanceamento de uma  turbina através de um algoritmo 
Metropolis hibridizado com o método Hooke-Jeeves 

 
ABSTRACT 

 

Combinatorial optimization problems have been a great challenge for metaheuristics. 
One of them, the turbine balancing problem, which is NP-hard, is solved here. In order 
to do so, we use a Metropolis Algorithm, the Particle Collision Algorithm (PCA), 
hybridized with the well-known Hooke-Jeeves pattern search method. The aim of this 
algorithm, called Hooke-Jeeves PCA, is to perform a wide search in the solution space 
using a stochastic optimization method (the PCA) and then scan the promising areas 
with a local search technique (Hooke-Jeeves). This algorithm is favorably compared 
against a state-of-the-art metaheuristic, differential evolution. Our results show that 
Hooke-Jeeves PCA has the potential to be applied to other combinatorial optimization 
problems. 

      

Keywords: Combinatorial Optimization. Metropolis Algorithm. Hybridization. Hooke-
Jeeves Method. Random Keys. 

 

RESUMO 

 

Problemas de otimização combinatória têm sido um grande desafio para 
metaheurísticas. Um deles, o problema de balanceamento de uma turbina, que é NP-
difícil, é resolvido neste artigo. Para fazê-lo, utilizamos um algoritmo de Metropolis, o 
algoritmo de colisão de partículas (PCA), hibridizado com o notório método de busca 
padrão de Hooke-Jeeves. A finalidade deste algoritmo, chamado Hooke-Jeeves PCA, 
é fazer uma busca ampla no espaço de soluções utilizando um método de otimização 
estocástica (o PCA) e depois explorar as áreas promissoras com uma técnica de 
busca local (Hooke-Jeeves). Este algoritmo tem um desempenho favorável em 
relação a uma metaheurística que representa o estado da arte, a evolução diferencial.    
Nossos resultados demonstram que o Hooke-Jeeves PCA tem potencial para ser 
aplicado a outros problemas de otimização combinatória.  

 

Palavras-chave: Otimização combinatória. Algoritmo Metropolis. Hibridização. 
Método de Hooke-Jeeves. Random Keys.  
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1. INTRODUCTION 
 
Combinatorial optimization problems (PAPADIMITRIOU, STEIGLITZ, 1998) are still 

interesting for researchers, as they are computationally hard to solve. Besides, there is 

also practical interest in these problems, since they may lead to a better use of limited 

resources, minimizing costs and/or maximizing returns (YANASSE, 2013).  

One of these problems, which we address here, is the turbine balancing problem 

(MOSEVICH, 1986). This problem is NP-hard (JOHNSON, GAREY, 1979; ATALLAH, 

BLANTON, 2010), which, according to ATALLAH and BLANTON (2010) means “a 

complexity class of problems that are intrinsically harder than those that can be solved by 

a Turing machine in nondeterministic polynomial time. When a decision version of a 

combinatorial optimization problem is proven to belong to the class of NP-complete 

problems, which includes well-known problems such as satisfiability, traveling salesman 

problem, etc., an optimization version is NP-hard.” 

Metaheuristics are general heuristics that can be applied to a wide variety of 

optimization problems. Recently, there have been many efforts in the application of 

metaheuristics to combinatorial optimization problems (PERES, CASTELLI, 2021). 

Following this trend, we apply the Particle Collision Algorithm (SACCO et al., 2006; RIOS-

COELHO et al., 2010) to the above-mentioned problem.  

The Particle Collision Algorithm (PCA) is a Metropolis-based algorithm 

(METROPOLIS et al., 1953) that was introduced as an alternative to simulated annealing 

(KIRKPATRICK et al., 1983). The main motivation behind the PCA was that in spite of 

being very powerful, the canonical simulated annealing is too sensitive to the choice of 

free parameters, such as, for example, the annealing schedule and initial temperature 

(CARTER, 1997).  The PCA does not rely on user-supplied parameters other than the 

number of iterations for the local search phase to perform the optimality search, being thus 

more robust. This algorithm is loosely inspired by the physics of nuclear particle collision 

reactions (DUDERSTADT, HAMILTON, 1976), particularly scattering and absorption. 

Thus, a particle that hits a high-fitness “nucleus” is “absorbed” and explores the 

boundaries, which means that it generated stochastic solutions in the same region of the 

search space. On the other hand, a particle that hits a low-fitness region is scattered to 

another region of the search space. The PCA, on its canonical form or variants, has been 

successfully applied to many real-world optimization problems (SACCO et al., 2006; 

KNUPP et al., 2009; ABUHAMDAH, AYOB, 2009; RIOS-COELHO et al., 2010; DA LUZ et 
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al., 2011; MARTINEZ GONZÁLEZ et al., 2014; ANOCHI, CAMPOS VELHO, 2015; 

ANOCHI et al., 2021). 

In this article, we use a hybridization of the Particle Collision Algorithm and the well-

known Hooke-Jeeves local search algorithm (HOOKE, JEEVES, 1961) that was 

introduced by RIOS-COELHO et al. (2010). The aim of the proposed algorithm, named 

HJPCA, is to perform a wide search in the solution space using a stochastic optimization 

method (the PCA) and then scan the promising areas with a local search technique 

(Hooke-Jeeves). This search is performed iteratively until it reached a stopping criterion.    

HJPCA is compared against a state-of-the-art stochastic optimization algorithm: 

differential evolution (DE; STORN, PRICE, 1997), on its canonical version and on a recent 

variant (SACCO et al., 2014). Citing SINGH et al. (2021): “Differential Evolution (DE) is a 

simple to implement population-based heuristic method used for solving optimization 

problems even if the function is discontinuous or non-differentiable. It is proved to have 

one of the fastest rates of convergence toward the optima. (...) DE has won top ranks in 

many IEEE CEC competitions, as it has outperformed its competitors in solving real 

parameter space optimization problems. DE and its variants have also been applied to 

solve various engineering optimization problems.” 

The remainder of the paper is organized as follows. In the next section, the turbine 

balancing problem, the optimization method used to solve it, and the implementation and 

setup are presented. In section 3, the results are shown, then discussed in the following 

section. Finally, in Section 5, the conclusions are presented.  

 
2. THE PROBLEM, THE OPTIMIZATION METHOD AND IMPLEMENTATION 

 
2.1. The Turbine Balancing Problem  

This NP-hard practical problem was originally proposed by MOSEVICH (1986) as a 

combinatorial optimization problem, but it was also formulated as a quadratic assignment 

problem (LAPORTE, MERCURE, 1988). Since then, it has been attacked by other 

researchers, using several formulations and different kinds of turbines (SINCLAIR, 1993; 

AMIOUNY et al., 2000; PITSOULIS et al., 2001; CHOI, STORER, 2004; SACCO et al., 

2014; SACCO, HENDERSON, 2015). 

In this work, we solve the case presented by MOSEVICH (1986). The problem 

consists in balancing the runners of a Francis hydraulic turbine. SINCLAIR (1993) gives a 

precise description of the problem to be solved: “A hydraulic turbine runner consists 

essentially of a cylinder with blades attached to its circumference. The turbine rotates as 
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water flows across the blades. During the manufacturing process the individual blades 

must be welded into place, equally spaced around the cylinder. To a better undestanding, 

is possible to see in Figure 1 the Francis hydraulic turbine. The problem encountered 

during this phase is the static balancing of the completed runner. Because of the 

complexity of the manufacturing process, the final weights of the blades may differ 

substantially. The result is an unbalanced runner. Since the runner can rotate at very high 

revolutions during use, it is crucial that the unbalance be as small as possible, otherwise 

the bearings on which the runners rotate will wear out very quickly.” We must add that, 

according to MOSEVICH (1986), the variations in final weight mentioned above can be as 

great as  

 

 

Figure 1. Example of a Francis Turbine (in orange) in a hydraulic framework. 

 

Let us formulate the problem, following Mosevich (1986). The runner is modeled as  

equally-spaced weights on a circle of zero mass and radius  equal to the common 

distance from the blade centers-of-mass to the runner axis. The blade positions are 

labeled counterclockwise, starting at position  in an  coordinate system, 

receiving indexes  Let    be a configuration of blades where   

assigns blade   to position  First, we define the following variables: 
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Then, each permutation   determines a center of mass  given by Equations 

(1) and (2): 

 

 

 
(1) 

 

 
(2) 

 

 Finally, Equation (3) define deviation  

  (3) 

which is the objective function to be minimized.  means that a perfect static 

balance has been reached (MOSEVICH, 1986). 

As suggested by Mosevich (1986), we scale the problem making   We use 

  blades, as a typical runner has between 14 and 18 blades (MOSEVICH, 1986), 

and this value of  is one of the most difficult to optimize (LAPORTE, MERCURE, 1988). 

Regarding the values of   we follow Laporte and Mercure (1988), generating  

numbers according to a normal distribution with a mean of   and a standard deviation 

of    so that most  fall within  of the mean. We generated these numbers 

using a Gaussian Random Number Generator available at RANDOM.ORG (2012). 

 

2.2. The Particle Collision Algorithm combined with Hooke-Jeeves (HJPCA) 

The PCA algorithm resembles in its structure that of simulated annealing: first an 

initial configuration is chosen; then there is a modification of the old configuration into a 

new one. The qualities (i.e., objective function or fitness values) of the two configurations 

are compared. A decision is then made on whether the new configuration is “acceptable”. 

If it is, it serves as the old configuration for the next step (current). If it is not acceptable, 

the algorithm proceeds with a new change of the old configuration (trial). PCA can also be 
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considered a Metropolis algorithm, as a trial solution can be accepted with a certain 

probability. This acceptance may reduce the convergence to local optima.  

A summary of PCA combined with Hooke-Jeeves (HJPCA) algorithm is given in 

Figure 2. The algorithm's default is for maximization problems. For minimization problems, 

just multiply the objective-function by  and invert the ratio in . 

 

Initialization Step 

Generate an initial random solution    

Main Step 

 Do until termination criterion is reached: 

1. Generate a stochastic perturbation  of the solution  

  

2. If  let  and go to 

HookeJeeves. Otherwise, go to Scattering. 

 End-Do 

HookeJeeves Function 

1. Apply the HJ method to the solution with 

    

2. If   let   

return 

Scattering Function 

1. Calculate   

2. If   let    receive a random solution. 

Otherwise, go to HookeJeeves.  

return 

Figure 2. Algorithm of HJPCA prosed method. 
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The “stochastic perturbation” in the beginning of the loop consists in random 

variations in each variable's values within their ranges. Note that in PCA the perturbation 

mechanism is different from simulated annealing, where generally only a few variables are 

perturbed at a time (Brooks and Morgan, 1995). 

If the quality or fitness of the trial solution configuration is better than the fitness of 

the current one, then the “particle” is “absorbed”, there is an exploitation of the boundaries 

searching for an even better solution. In this work, this exploitation is performed using the 

classical Hooke-Jeeves pattern search method, which performed better than the original 

scheme proposed in the canonical version of the PCA; see Rios-Coelho et al. (2010) for 

extensive comparisons. Note that as the Hooke-Jeeves method was conceived as a 

minimization algorithm, we had to change the signs of the objective-function values in 

function HookeJeeves in order to fit the PCA. 

Otherwise, if the quality of the trial is worse than the current's, the “particle” is 

“scattered”. By scattering we mean that the new configuration receives random values 

between the lower and upper bounds of each variable. The scattering probability 

  is inversely proportional to its fitness function value. Thus, a low-fitness particle 

will have a greater scattering probability. This mechanism is essential to the success of the 

algorithm, as it introduces a purely random component, which is responsible to avoid 

getting stuck at local optima. 

 

2.3. Implementation and Setup 

Our tests were performed on an Intel Core i7 PC with 8 Gb RAM running Ubuntu 

14.10. Our algorithms were implemented in C++ and compiled with GNU g++. For the 

stochastic part of the algorithms, we used the pseudorandom number generating algorithm 

developed by MATSUMOTO and NISHIMURA (1998), the Mersenne Twister, which is 

available for download at one of its creator's website (MATSUMOTO, 2011).   

For DE and its variant, Topographical Clearing Diferential Evolution (TCDE; Sacco et 

al., 2014), we used the following parameters: population sizes  

scaling factor  and crossover rate  which are commonly applied in the 

literature (for example, VESTERSTROM, THOMSEN, 2004; SACCO et al., 2014; SACCO 

et al. 2015). For TCDE, we used the number of nearest-neighbors  as in SACCO 

et al. (2014). 
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The Hooke-Jeeves routine inside HJPCA was set up with ∆ = 10-3, ɛ = 10-6, and                

α = 0.5.  

Regarding the turbine balancing problem, as the PCA was conceived as a 

continuous optimization algorithm (SACCO et al., 2006), first, we need to adapt it for 

combinatorial optimization. In order to do so, we employ a representation technique 

named random keys (BEAN, 1994). This mechanism, originally designed for the genetic 

algorithm, allows us to treat discrete problems as if they were continuous. The solution is 

translated into a discrete sequence only in the moment of the objective function evaluation. 

Let us show how it works with a simplified example: a six-component combinatorial 

optimization problem. Our algorithm works with six continuous variables, all in the range 

 Let us suppose we have a solution , given by 

  (4)  

Each one of these variables receives an integer index, here in subscripts, 

corresponding to their order of appearance:  

  (5) 

Then, these real numbers (the so-called random keys) are sorted:  (6) 

The subscripts represent a valid sequence  :  

  (7) 

Note that, even in an extreme case with repeated real numbers, a valid sequence is 

produced:   

  (8) 

  (9) 

  (10) 

  (11) 

As the turbine balancing problem has a known global minimum, the algorithms were 

run using the same termination criterion as, for example, in SIARRY et al. (1997) and 

RIOS-COELHO et al. (2010), which is ideal for an algorithm's performance assessment: 

  (12)   
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where  is the global minimum,  is the current best,  corresponds to 

the relative error and  corresponds to the absolute error (SIARRY et al., 1997). 

As a safeguard, we set a maximum number of objective function evaluations equal to  

 for all methods tested herein as a stopping criterion, in case the condition given by 

Eq. (12) is not achieved.  

 We performed one-hundred executions for each algorithm, using one-hundred 

previously selected random seeds in all of them, so that the experiments are unbiased. 

 

3. RESULTS 
 

Table 1 compares the results obtained by DE and its variant TCDE with two 

population sizes, denoted by PS (not applicable to HJPCA). SR is the success rate for 

each algorithm and/or setup. Regarding the number of fitness evaluations (NFE), we 

display the minimum, maximum, and average NFEs taking into account only the 

successful runs. The last row refers to the relative average (RA), which was obtained 

dividing the average NFE (AVG) of each algorithm by the largest value achieved by them 

(MAX(AVG)).  

 

Table 1. Results for the turbine balancing problem. 

  DE TCDE HJPCA 

PS 100 500 100 500 N/A 

SR  10/100 (10%) 85/100 (85%) 31/100 (31%) 90/100 (90%) 100/100 (100%) 

NFE 

Min. 87,310 78,140 102,613 147,673 251,613 

Max. 8,280,554 46,394,433 9,268,706 48,357,305 68,511,282 

Avg. 3,296,290 14,107,599 4,137,400 18,601,053 15,633,556 

RA 0.18 0.76 0.22 1.00 0.84 

   

4. DISCUSSION 

 

Analyzing Table 1, one can note that HJPCA got a success rate of 100%, compared 

to the top results of 85% for the canonical differential evolution and 90% for its variant. 

This is remarkable bearing in mind that DE is a top competitor in the field (SINGH et al., 

2021).  

The large population size (500 individuals) required by DE and variant to obtain 

satisfactory results demonstrate the great complexity of the turbine balancing problem.  In 

fact, the recommended population size for this optimization method is 100 individuals 

(VERSTERTROM, THOMSEN, 2004).  
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In terms of number of function evaluations (NFE), the difficulty of the problem is even 

clearer. In order to obtain a success rate of 100%, the HJPCA required an average of 

almost 16 million evaluations, which is 84% of the best DE (TCDE with 500 individuals) 

cost. In other words, Hooke-Jeeves PCA was more effective in searching the solution 

space than DE. Possibly the exploration provided by PCA associated with the exploitation 

promoted by the method of Hooke-Jeeves was responsible for that.  

 
5. CONCLUSIONS 
 

In this work, we applied the Hooke-Jeeves PCA, a hybridization of a Metropolis 

algorithm with a pattern search method, to an NP-hard combinatorial optimization problem: 

the turbine balancing problem.  

The results obtained by this hybrid metaheuristic, better than those achieved by a 

state-of-the-art algorithm, differential evolution, show that this method has the potential to 

be applied to other combinatorial optimization problems, a class that represent some of the 

most challenging problems in the field (YANASSE, 2013).   

As further development, we plan to hybridize the PCA with more recent and or 

effective local search methods (see BAZARAA et al., 2013). Another future investigation 

could be the application of the PCA paradigm associated with specific heuristics to the 

traveling salesman problem (PAPADIMITRIOU, STEIGLITZ, 1998).  
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