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Simulação Numérica de Inundações em Casos de Rompimento de Barragem 

Numerical Simulation of Flooding in Dam-break Cases 

 

 

RESUMO 

 

A água é um recurso fundamental para o desenvolvimento da sociedade, atraindo as 
comunidades desde o início da civilização. Esta proximidade das civilizações dos 
recursos hídricos demandou estratégias para uma melhor gestão da água, como à 
construção de barragens, sujeitando os ecossistemas a problemas mais graves. Neste 
trabalho, as equações de águas rasas são resolvidas numericamente pelo método dos 
elementos finitos e o método das linhas ou direções características, no espaço e no 
tempo, respectivamente. O modelo é utilizado para simular casos de rompimento de 
barragem encontrados na literatura, em leito molhado sem obstáculos e com obstáculos 
sólidos. Os resultados obtidos estão em conformidade com as publicações, validando a 
metodologia adotada. Por fim, as simulações numéricas possibilitam conhecer a 
ocorrência do escoamento de rompimento de barragem, gerando informações acerca 
da ocorrência deste tipo de evento desastroso. 
 

Palavras-chave: Sistemas de águas rasas. Método dos elementos finitos. Método das 
linhas ou direções características. 
 

RESUMO 

 

Water is a fundamental resource for the development of society, attracting communities 
since the beginning of civilization. This proximity of civilizations to water resources has 
demanded strategies for better water management, such as the construction of dams, 
subjecting ecosystems to more serious problems. In this paper, the shallow water 
equations are solved numerically by the finite element method and the characteristic‐
based split scheme, in space and time, respectively. The model’s used to simulate dam-
break cases from literature, in wet bed without obstacles and with solid obstacles. The 
results obtained are in accordance with the publications, validating the adopted 
methodology. Finally, the numerical simulations make it possible to know the occurrence 
of dam-break flow, generating information about the occurrence of this kind of disastrous 
event.  
 

Keywords: Shallow water systems. Finite element method. Characteristic-based split 
scheme. 
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1. INTRODUCTION 
 
Water is a natural resource of reference for the prosperity and maintenance of society, 

so that it encouraged civilizations to stay close to water resources. This proximity to water 

left the communities subject to the adversities coming from the environment, as in the case 

of water shortage, floods, pollution, tsunamis and others (CARDOSO, 1980). 

Social demands were added to the growth of cities and urbanization, leading to an 

increase in the use of water for the support of urban areas and the development of services. 

It’s necessary to build dams, dikes, industries, and power plants for a better utilization and 

management of water resources. 

These constructions satisfy the people’s needs at the same time subjecting different 

ecosystems to even more severe disasters, whether from the uncontrolled increase of 

pollutants or the dam-break cases, which can be triggered by human factors or natural 

causes. Thus, even as fundamental, water becomes an even greater threat to communities, 

causing loss of life and great economic losses (GINTING; MUNDANI, 2019). 

The severity of dam-break disasters is associated with the release of a large mass of 

water instantaneously, usually in inhabited areas. It becomes relevant to study the evolution 

of the breach flows for the management of environmental disasters. And, the numerical 

simulation of a hydrodynamic model has important contributions in decision making through 

flooding events. 

The present work deals with the numerical simulation of dam-break flow from the 

mathematical model based on the shallow water equations. For this, triangular finite 

elements with linear interpolation function are used in the spatial discretization. In time, the 

Characteristic-based split scheme (CBS) is applied in its explicit form, suitable for solving 

problems with dominant advection.  

Finally, the methodology’s applied to flooding situations present in the literature, 

making it possible to validate the adopted techniques by comparing the results obtained with 

publications. 

 
 
2. THE MODEL 

 
A two-dimensional shallow water equation system is obtained by integrating the 

conservation of mass and momentum equations, applying Leibniz's rule for variable 

boundary integrals (AWRUCH, 1983). Also, the model formulation are adopted: the specific 

mass is constant; the horizontal dimensions are much larger than the vertical dimensions; 
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the bottom topography doesn’t change in time; the pressure is hydrostatically distributed; 

the vertical velocity is very small and its acceleration is neglected; the velocity at the bottom 

is null; and the horizontal components of the velocity aren’t uniform, making it convenient to 

work with an average value that’s constant with depth (ZIENKIEWICZ et al., 2005). So, the 

shallow water equations is given by: 

𝜕ℎ

𝜕𝑡
+

𝜕𝑈𝑖

𝜕𝑥𝑖
= 0, (1)

𝜕𝑈𝑖

𝜕𝑡
+

𝜕𝐹𝑖𝑗

𝜕𝑥𝑗
+

𝑔

2

𝜕𝜂

𝜕𝑥𝑖

𝜕𝐻

𝜕𝑥𝑖
+ (−1)𝑖𝜐 𝑈𝑘 + (

𝑔

𝑐𝑚
2

|𝑈|

ℎ2
𝑈𝑖) = 𝑐𝑑̅̅̅|𝑊|𝑊𝑖, 

(2)

in the domain   with 𝑖, 𝑗 = 1,2 and 𝑘 = 𝑖 + (−1)𝑖+1, onde 𝑢𝑖(𝑥1, 𝑥2, 𝑡) is the component of 

instantaneous velocity in the 𝑥𝑖 direction, 𝑈𝑖(𝑥1, 𝑥2, 𝑡) is the component of flow (flow per unit 

width) in the direction of 𝑥𝑖, ℎ(𝑥1, 𝑥2, 𝑡) is the total depth, 𝐻(𝑥1, 𝑥2) is the distance from the 

reference plane to the bottom and η(𝑥1, 𝑥2, 𝑡) is the elevation of the free surface relative to 

the reference plane. Also, 𝑈𝑖 = Û𝑖ℎ, 𝐹𝑖𝑗 = Û𝑖𝑈𝑗, ℎ = 𝐻 + 𝜂, g is the acceleration of gravity (m 

s-2), Û𝑖(𝑥1, 𝑥2, 𝑡)is the component of velocity constant at depth in the 𝑥𝑖 direction, 𝜐 =

2𝜔 sin 𝜃 = 1.4 . 10−4 sin 𝜃 is the Coriolis coefficient (𝜔 = 7 .  10−5 s-1 is the rotational angular 

velocity for Earth and θ is the latitude of the point considered), 𝑐𝑚 is the Chezy coefficient 

(m½ s-1), which is linked to Manning's coefficient 𝜐 by the expression 𝑐𝑚 = ℎ
1
6 𝜐−1 (where 𝜐 

is given in 𝑠/𝑚
1
3 and 𝑔/𝑐𝑚

2 is dimensionless), 𝑐𝑑̅̅̅ is a dimensionless drag coefficient, 

|𝑊|𝑊1 = |𝑊||𝑊|𝑐𝑜𝑠  𝜗 and |𝑊|𝑊2 = |𝑊||𝑊|𝑠𝑖𝑛 𝜗, where |𝑊| is the absolute value of the 

wind speed and 𝜗 is the wind direction (BUKATOV; ZAV’YALOV, 2004). 

In shallow water systems the wavelengths are large, due to long waves, whose celerity 

𝑐𝑤 is given by: 

𝑐𝑤 ≅ √𝑔ℎ or 𝑐𝑤
2 =

𝑑𝑝

𝑑ℎ
=

1

𝑐𝑤
2

𝜕𝑝

𝜕𝑡
, 

where 𝑝 is the pressure given by 𝑝 =
1

2
𝑔(ℎ2 − 𝐻2). 

The initial and boundary conditions must be given to shallow water equations. The 

initial conditions consist of providing 𝑈 and ℎ values at 𝑡 = 0 𝑠 and the forced boundary 

conditions, of Dirichlet type, are: a) Un= 𝑈𝒊𝑛𝑖 = 𝟎 in Г𝑤 ("solid" or "closed" contour); b) Un=

𝑈𝒊𝑛𝑖 = 𝑈𝑛
̅̅̅̅  in Г𝑈 ("open" contour); c) ℎ = ℎ̅ in Гℎ ("open" contour). 𝑈𝑛

̅̅̅̅  and ℎ̅ are prescribed 

values of the unknowns in the parts Г𝑈 and Гℎ. And, 𝑛𝑖 is the unit versor component. The 

total contour Г is the union of all parts, so Г = Г𝑤 ∪ Г𝑈 ∪ Гℎ. 

  

3. DISCRETIZATION OF THE EQUATIONS 
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3.1 Spatial discretization 

 

In the shallow water equations, Eq. (1) and (2), the Galerkin weighted residuals 

technique for the finite element method is employed, using three-node triangular elements 

with linear interpolation function (ZIENKIEWICZ et al., 2005). 

The methodology’s applied to the governing equations of the flow at the level of a finite 

element, generic of area B. The variables are interpolated on the element with linear 

functions 𝜙 = [𝜙1 𝜙2 𝜙3] and the weighting factors are simplified. The conservation of mass 

and momentum equations can be compacted as: 

𝑀 ℎ̇ + 𝐴𝑖𝑈𝑖 = 0, 

𝑀 �̇�𝑖 + 𝐾𝑖𝑈𝑖+𝐾𝑘𝑈𝑘 + 𝑔ℎ𝐴𝑖ℎ = 𝑃𝑖
𝑈, 

where the symbol "__" below the variable indicates a nodal quantity and above the variable 

indicates the barycenter of the element, ℎ̇ =
𝜕ℎ

𝜕𝑡
 and 𝑈𝑖

̇ =
𝜕𝑈𝑖

𝜕𝑡
, ℎ = 𝜙 ℎ =

(ℎ1+ℎ2+ℎ3)

3
 

whose ℎ𝑖(𝑖 = 1,2,3) are the values of ℎ at the finite elemento nodes. 

The matrices and vectors are given by: 

𝑀 = ∫ (𝜙𝑇𝜙)
𝐵

𝑑𝐵 

𝐴𝑖 = ∫ (𝜙𝑇
𝜕𝜙

𝜕𝑥𝑖
)

𝐵

𝑑𝐵 

𝐴𝑗
𝑢 = ∫ (𝜙𝑇

𝜕𝜙

𝜕𝑥𝑗
) Û𝑗

𝑇

𝐵

 𝑑𝐵 

𝐾𝑘 = [(−1)𝑖𝜐𝑀] 

𝐾𝑖 = [𝐴𝑗
𝑢 + (

𝑔

𝑐𝑚
2

) (
|𝑈|

ℎ
2 ) 𝑀] 

𝑃 = ∫ 𝜙𝑇

𝐵

𝑑𝐵 

𝑃𝑖
𝑈 = (𝑐𝑑|𝑊|𝑊𝑖)𝑃 − 𝑔ℎ𝐴𝑖𝐻 

with 𝑖, 𝑗 = 1,2 and 𝑘 = 𝑖 + (−1)𝑖+1. 

The finite element method (FEM) is a technique to transform a continuous problem into 

a discrete problem, so that the solution is obtained in a finite number of points, the element 

nodes. In this work, the shallow water model is applied in a two-dimensional domain, using 

triangular-shaped elements with nodes located at their vertices, having the coordinates and 

the unknowns of the problem interpolated by linear functions. 

Any point located inside a triangular element with x and y coordinates is given a new 

dimensionless coordinate system, called triangular or natural coordinates. According to 

Huebner et al. (2001), this new coordinate system is related to the spatial coordinates by: 

𝐿𝑖 =
(𝑎𝑖+𝑏𝑖𝑥+𝑐𝑖𝑦)

2𝐴
, 𝐿1 + 𝐿2 + 𝐿3 = 1 and 𝜙 = [𝐿1  𝐿2  𝐿3], 
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where 𝑎𝑖 = 𝑥𝑗𝑦𝑘 − 𝑥𝑘𝑦𝑗, 𝑏𝑖 = 𝑦𝑗 − 𝑦𝑘 and 𝑐𝑖 = 𝑥𝑘 − 𝑥𝑗 (𝑖, 𝑗, 𝑘 = 1,2,3 and 𝑖 ≠ 𝑗 ≠ 𝑘). 

The matrices are assembled for each element. To solve the problem, you must make 

the assembly for the entire system, apply the boundary and initial conditions and adopt a 

scheme for integration in time. After performing these steps, the unknowns, ℎ and 𝑈𝑖, are 

calculated at each node of the mesh. 

 

3.2 Time discretization 

 

The Characteristic-based split scheme (CBS) is employed in the time integration of 

shallow water equations. The scheme makes a split of the problem variables, which are the 

components of the flow per unit width 𝑈𝑖 (or the velocity componentes Û𝑖) and the total depth 

ℎ. 

The CBS scheme is presented in detail by ZIENKIEWICZ et al. (2005), where the 

variable is obtained from the Taylor Series expansion, with time increment ∆𝑡 = 𝑡𝑛+1 + 𝑡𝑛. 

The first step of the method is to solve the momentum equation without the pressure terms 

by splitting it into ∆𝑈𝑖 = ∆𝑈𝑖
∗ + ∆𝑈𝑖

∗∗, whose pressure is considered as a source term in ∆𝑈𝑖
∗∗. 

After calculating ∆𝑈𝑖
∗, the pressure is calculated. In the last step, ∆𝑈𝑖 is determined, in order 

to obtain the average flow 𝑈𝑖
𝑛+1 evaluated at time 𝑛 + 1 by means of 𝑈𝑖

𝑛+1 = 𝑈𝑖
𝑛 + ∆𝑈𝑖. 

The three-step procedure can be solved explicitly or implicitly, in this paper a fully 

explicit scheme is employed. Therefore, the stability condition is that the time step adopted 

is less than or equal to the critical time interval. That is, ∆𝑡 ≤ ∆𝑡𝑐𝑟𝑖𝑡, where ∆𝑡𝑐𝑟𝑖𝑡 =
𝑙

𝑐𝑤+|𝑈𝑖|
, 

whose 𝑙 is a characteristic size of the element (GRAVE, 2016). 

In this way the time discretization of the equations obtained with the application of finite 

elements is done. So: 

Step 1: 

(𝑀𝐷∆𝑈𝑖
∗)

𝑚+1
= −∆𝑡 {[(𝐴𝑗

𝑢 + 𝑀𝛽)𝑈𝑖 + 𝑀𝜐𝑈𝑘 + 𝐴𝑖
𝐻𝐻 − 𝑃𝑖

𝑤] −
∆𝑡

2
[(−𝐷𝑘𝑗

𝑢 + 𝐴𝑘
𝑢,𝛽

)𝑈𝑖 +

𝐴𝑘
𝑢,𝜐𝑈𝑠 − 𝐷𝑘𝑖

𝑢,𝑤𝐻 − 𝑃𝑘,𝑖
𝑤 + 𝑓𝑘𝑗

𝑢 ]}
𝑛

+ (𝑀𝐷 − 𝑀)(∆𝑈𝑖
∗)

𝑚
. 

 

Step 2: 

(
ℎ

𝑐𝑤
2

𝑀𝐷∆𝑝)

𝑚+1

= −∆𝑡 {𝐴𝑗 (𝑈𝑗 +
1

2
∆𝑈𝑗

∗) −
∆𝑡

2
ℎ (−𝐷𝑘𝑗

′ 𝑝 + 𝑓𝑝)}
𝑛

+
1

𝑐𝑤
2

(𝑀𝐷 − 𝑀)∆𝑝𝑚 
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Step 3: 

(𝑀𝐷∆𝑈𝑖 )
𝑚+1

= −𝑀 ∆𝑈𝑖 − ∆𝑡ℎ [𝐴𝑖𝑝 −
∆𝑡

2
(−𝐷𝑘𝑖

𝑢 𝑝 + 𝑓𝑝
𝑢)]

𝑛

+ (𝑀𝐷 − 𝑀)(∆𝑈𝑖 )
𝑚

. 

 

Final variable calculations: 

𝑈𝑖
𝑛+1 = 𝑈𝑖

𝑛 + ∆𝑈𝑖 

ℎ𝑛+1 = [𝐻2 +
2𝑝

𝑔
]

1
2
  

 𝑝𝑛+1 = 𝑝𝑛 + ∆𝑝 

Û𝑖
𝑛+1 =

𝑈𝑖
𝑛+1

ℎ𝑛+1, 

with 𝑖, 𝑗, 𝑘 = 1,2 and 𝑠 = 𝑖 + (−1)𝑖+1, 𝑚 is the iterations number and 𝑛 is the time instant. 

The matrices and vectors are: 

T

M d 


=   'M M


=  M M


=  

3
DM I


=  T

j

j

A d
x






 
=    
  

u T

j j

j

A Û d
x






 
=    
  

,u T

k k

k

A Û d
x

 




 
=  

 
  

,
'

u T

k k

k

A v Û d
x

 




 
=  

 
  

H T

i

i

A g d
x


 



 
=  

 
  

w T

i iP d 


=   '

T

k

k

P d
x






= 


 

( ),

,

T

ku w

k i i

k

Û
P d

x







= 

  

'

T

kj

k j

D d
x x

 



 
= 

   
( ) ( )

T

k ju

kj

k j

Û Û
D d

x x

 



 
= 

   
( ),

T

ku H

ki

k i

Û
D g d

x x

 




 
= 

   

T p

nf q d


=   

| |i d ic W W =  

2
2

| |

m

g U

c h
 =  

( )
( )

( )ju T T u

k kj nkj
j

Û
f Û n d Û q d

x


 

 


=  = 

   ( )
( )

( )u T T p

k kj np
j

p
f Û n d Û q d

x


 

 


=  = 

   

( )( ) jju

n j

n j

ÛÛ
q n

x x

 
 = =

   

 
( )

p

n j

n j

pp
q n

x x

 
 = =

   

` 

'
( , ) [( ), ( )] [( )] [( )]

u

kj kj k jD m n D m n Û m Û n=  
, '

, ( ) [( )] [( )]
u w

k i k kP n P n U n=  

,
( , ) [( )] [ , ( )]

u

k kkA m n Û n A m n


=  
,

( , ) [( )] [ , ( )]
u

k kkA m n Û n A m n


=  

where 𝐼 is the identity matrix,𝜐′ = (−1)𝑖𝜐, 𝜂 = ℎ − 𝐻 and 𝑖𝑗, 𝑘 = 1,2. 
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4. RESULTS AND DISCUSSION 
 

A computational code was developed by GRAVE (2016) in FORTRAN language, 

solving the shallow water equations by FEM and the CBS scheme. To numerically simulate 

a real situation a tool is needed to modify the domain as the water resource level varies 

causing floods and droughts, introducing or extracting elements in the domain, working with 

the idea of "dry" and "wet" elements, varying with time. 

Therefore, it’s relevant to know which mesh elements belong to the boundary between 

a dry (ℎ = 0) and a wet (ℎ > 0) region. The equations can’t be solved directly if ℎ = 0. For 

this reason, two types of nodes and elements can be distinguished: "dry" nodes (ℎ = ℎ𝑚𝑖𝑛) 

and "wet" nodes (ℎ > ℎ𝑚𝑖𝑛), where ℎ𝑚𝑖𝑛 is the minimum water level adopted as reference. 

The "dry" elements are those that have one or two "dry" nodes, while the "wet" elements 

have all their nodes "wet". And, in the numerical algorithm only the "wet" nodes and elements 

are considered (GRAVE, 2016). 

The methodology presented is applied to solve dam-break cases from the literature, 

with results available for comparison. The simulations of the examples demanded the 

replication of the computational meshes, with the number of triangular finite elements, the 

boundary conditions and the parameters used from the literature. 

 

4.1 Partial break on wet bed 

 

The partial dam-break over the wet bed is an example used to examine the shock 

capturing capability in shallow water models, as simulated by PARSA (2018). 

The study domain is represented is a 200 𝑥 200 𝑚2 mesh, this geometry is illustrated 

in Figure 1. The computational mesh consists of 4,892 nodes and 9,424 triangular elements 

and the wall boundary condition. To limit the dry or wet areas the value of ℎ𝑚𝑖𝑛 = 0.01 𝑚 

and the acceleration of gravity of 9.8 𝑚/𝑠2 was assigned. The initial condition (𝑡 = 0 𝑠), the 

water height inside the reservoir is 10 and 5 𝑚 in the outer region. Coriolis effects, wind 

action and bottom friction are neglected in this test case. 
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Figure 1. Partial break on wet bed: Geometry 

Source. Authors' elaboration 

 
Figures 2 and 3 show the results in three-dimensional and two-dimensional form, 

respectively, at 7.2 𝑠. With the dam-break the water flow moves towards the outer region, 

producing waves downstream where the water level rises. While, there is progressive 

emptying upstream due to negative waves. It’s observed that the results generated in 

comparison with PARSA (2018) are satisfactory. 

 

 

Figure 2. Partial break on wet bed: Surface profile at 7.2 𝑠 
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Figure 3. Partial break on wet bed: Contour lines at 7.2 𝑠 

 

4.2 Flow against two solid obstacles 

 
Flooding in urban areas occurs with the flow of water between buildings. It’s necessary 

to consider the presence of solid obstacles to simulate events of this type, analyzing their 

influence on runoff. The example approached by PENG (2012) is reproduced in comparison 

with experimental results. 

The study region is a 1.6 𝑥 0.6 𝑚 rectangular flume, characterizing a closed reservoir 

with two square columns, with dimension 0.1 𝑚 and height 0.3 𝑚, at 𝑥 = 1.2 𝑚. Because the 

natural channel isn’t as flat as the artificial construction, six small square obstacles are 

added to the side walls, at 𝑥 = 0.4, 0.8 𝑎𝑛𝑑 1.2 𝑚 to simulate the irregular banks. More details 

of the geometry can be observed in Figure 4. 

 

 

Figure 4. Flow against two solid obstacles: geometry 

Source: Authors' elaboration 
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The present test case adopts the hypothesis of the existence of a gate, holding back 

the fluid at 𝑥 = 0.4 𝑚, which when removed quickly causes the dam-break flow. The initial 

condition of the problem is also shown in Figure 4, where the water level prior to the gate is 

𝑥 = 0.15 𝑚 and from it’s 𝑥 = 0.01 𝑚. 

The solid obstacles representation is done by the vertical walls technique, described 

by GRAVE (2016). The methodology consists in making "holes" in the mesh where the 

objects are located, being applied the wall boundary condition to close the boundaries and 

characterize the buildings, preventing the flow from advancing over the obstacle. The 

technique is adopted since in the urban area the runoff occurs between buildings, except in 

the case of large tsunamis. 

The computational mesh has 4,892 nodes and 9,424 triangular elements, with the 

closed boundary condition. The Manning coefficient is 𝑥 = 0.01 𝑠/𝑚
1
3, the acceleration of 

gravity is 9.806 𝑚/𝑠2 and ℎ𝑚𝑖𝑛 is 0.01 𝑚 to limit the dry or wet areas. Wind action and Coriolis 

effect are neglected. 

The results obtained from the model are compared with the solutions presented by 

PENG (2012). The total simulation time of the flow is 2 𝑠, from opening to the return of the 

wave to the gate. In Figure 5 it’s observed that it takes approximately 0.56 𝑠 for the wave to 

reach the square columns, traveling about 0.8 𝑚, in addition to the influence of the side 

objects. 

 

 

Figure 5. Flow against two solid obstacles: comparison of solutions at 𝑡 = 0.56 𝑠 

 
The flow from the dam-break is directed into the space between the solid obstacles in 

Figure 6, and the water level rises by reflection with the face of the columns. Next, in Figure 

7, at 0.725 𝑠 the wave envelops the columns and forms vortices. 
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Figure 6. Flow against two solid obstacles: comparison of solutions at 𝑡 = 0.625 𝑠 
 
 

 

Figure 7. Flow against two solid obstacles: comparison of solutions at t = 0.725 s 
 

Finally, in Figure 8 the flow approaches the domain boundary at 0.925 𝑠, with the waves 

returning toward the gate at 1.75 𝑠, in Figure 9, there being a change in the direction of the 

flow. 

 

 

Figure 8. Flow against two solid obstacles: comparison of solutions at 𝑡 = 0.925 𝑠 
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Figure 9. Flow against two solid obstacles: comparison of solutions at 𝑡 = 1.75 𝑠 

 

The model captured the wave formation due to the gate opening and the contact with 

the solid walls, of both columns and the side obstacles. The results make it known that flow 

occurs with the presence of obstacles, as in the urban area. The results compared to PENG 

(2012) were satisfactory. 

 
 

5. CONCLUSIONS 

 

This paper proposes the numerical solution of the two-dimensional shallow water 

mathematical model with the finite element method and the CBS scheme. The methodology 

showed satisfactory performance in simulating different examples of dam-break, capturing 

the oscillations from the sudden flow and the change of motion. 

In the example of partial dam-break on wet bed, the contour lines are similar to the 

results presented in the literature, identifying the significant difference between the height 

(h) inside and outside the reservoir. In the second example, flow against two solid obstacles, 

the results highlighted the influence through the flow as it occurs in flooding events in the 

urban area. 

Finally, the numerical simulation with the shallow water model provides an opportunity 

for contributions in the representation of dam-break flows, providing perspectives on the 

occurrence of this type of disaster and projections of its scope.  

In future work it will be possible to associate the hydrodynamic model with real flooding 

and pollutant dispersion events. The mathematical modeling provides several future 

perspectives for studies in the area of environmental disasters. 
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