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RESUMO 

 

Muitos estudos têm sido realizados para estimar a radiação solar global, uma vez que 
a determinação por equipamentos manuais ou automáticos envolve custos elevados. 
De forma geral, os modelos de previsão da radiação solar têm por finalidade a previsão 
da radiação solar diária e são desenvolvidos a partir de dados de temperatura. Estudos 
sobre a radiação solar horária são escassos.  A determinação da radiação solar horária 
pode aumentar a precisão em algumas áreas de pesquisa, como a agricultura de 
precisão. Além disso, as variações horárias da radiação solar computam 
intrinsecamente atributos locais que interferem no processo da radiação solar como a 
topografia, detalhes do relevo e composição atmosférica. O objetivo desse estudo foi 
desenvolver uma Rede Neural Artificial para a previsão da radiação global horária a 
partir de dados de temperatura e da radiação solar incidente no topo da atmosfera ao 
meio dia. Para isso, foram utilizados dados de monitoramento da estação automática 
do Instituto Nacional de Meteorologia – INMET, localizadas em Campos dos 
Goytacazes/RJ, às coordenadas 41,35° Longitude O e 21,71° Latitude S. O modelo 
adotado foi uma Rede Neural Artificial de múltiplas camadas (Multilayer Perceptron). 
O desempenho do modelo foi avaliado empregando Erro Quadrático Médio, o Erro 
Médio Absoluto e R². 

 

Palavras-chave: Amplitude Térmica. Incidência Solar. Inteligência Artificial 
 

 

ABSTRACT 

 

Many studies have been carried out to estimate the global solar radiation, since the 
determination by manual or automatic equipment involves high costs. In general, solar 
radiation prediction models are intended to predict daily solar radiation and are 
developed based on temperature data. Studies on hourly solar radiation are scarce. 
The determination of hourly solar radiation can increase accuracy in some areas of 
research, such as precision agriculture. In addition, the hourly variations of the solar 
radiation intrinsically compute local attributes that interfere in the process of solar 
radiation, such as topography, relief and atmospheric composition. The goal of this 
study was to develop an Artificial Neural Network to predict hourly solar radiation from 
temperature data and incident solar radiation at the top of the atmosphere at noon. For 
this, monitoring data from the automatic station of the National Institute of Meteorology, 
located in Campos dos Goytacazes, Rio de Janeiro State, Brazil, at coordinates 41.35° 
W Longitude and 21.71° S Latitude, were used. The adopted model was an Artificial 
Neural Network with multiple layers (Multilayer Perceptron). The performance of the 
model was evaluated by Mean Squared Error, Mean Absolute Error and R². 
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1. INTRODUCTION 
 
Solar energy is our planet's main source of energy. Photosynthesis is responsible for 

most of life. When light penetrates the atmosphere and the water column (from the sea, 

rivers, lakes, etc.), part of it is absorbed into the physiological and biochemical processes of 

plants and part is converted into heat. Plants convert light energy into chemical energy, 

which allows them to produce biomass (ASSIS & MENDEZ, 1989; HARARI, 2021).  

Furthermore, current population growth rates have created pressure to increase food 

and energy production. The generation of electricity from solar radiation represents an 

important tool for energy transition, offering more ecologically appropriate and sustainable 

solutions (RIBEIRO, 2011).  

Therefore, the study of the potential of global solar radiation (GSR) incident on the 

Earth's surface is extremely important, as it has impact on research on electricity production, 

agriculture, and climate change, for example (AULER & MINUZZI, 2022). 

The GSR is an essential input variable in the construction of crop growth models, since 

photosynthesis is primarily driven by solar radiation. Variations in hourly global solar 

radiation (HGSR) impact plant physiological processes and, consequently, the 

climatological hydric balance. The lack of solar radiation data is a limiting factor in the 

development of adequate models, with solar radiation being an important independent 

variable for these models (TRNKA et al., 2019). Thornton, Running & White (1997) warned 

of gaps in global solar radiation monitoring, considering that many stations primarily cover 

temperature and weather data. The relationship between stations monitoring solar radiation 

and changes in temperature monitoring and forecasting reached 1:500 on a global scale at 

the time of the study. The use of models focused on the optimal use of water and energy 

resources can lead to productivity gains and cost reductions for agriculture, especially in 

countries where agriculture is intensive and water resources are scarce. These often 

presuppose the use of fossil fuels for pumping, further incurring environmental additional 

costs (AL MAMUM et al., 2025). 

Regarding electricity generation, the model proposed in this article seeks to provide 

more discrete estimates of solar radiation. This is because, based on variations in incident 

solar radiation, it is possible, for example, to estimate the electricity generation potential for 

a given location and compare it with local electricity consumption data. Furthermore, it is 

possible to verify the solutions and potential of a given project based on temperature data. 
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Kim, Oh & Jeong (2016) report that a consistent HGSR database can significantly contribute 

to improving the energy performance analysis of buildings, for example. 

Such research is usually expensive, since it presumes the use of equipment, data 

acquisition or recorders, and often a professional qualified to operate the equipment. A more 

economical alternative is to use models to estimate GSR, as they can be built from historical 

data and allow estimates to be made with very satisfactory accuracy (AULER & MINUZZI, 

2022). 

Usually, empirical models for estimating GSR are built from temperature data only. 

Hargreave & Samani (1985) proposed a model that estimates GSR based on daily 

temperature data, for example. In general, the models presented in the literature were 

developed with the objective of making predictions of the daily GSR. Therefore, studies 

focused on HGSR are scarce. Determining HGSR attributes a higher degree of precision to 

several studies focused on precision agriculture, in addition to considering intrinsically local 

characteristics, such as topography, relief and climate on a local scale, which affects 

atmospheric composition. 

In this sense, this work aims to develop a model for predicting HGSR from air 

temperature data, in a manner analogous to that proposed by Hargreaves and Samani 

(1985). The model was built using an Artificial Neural Network (ANN). 

 

2. RELATED WORKS 

Although the studies to predict HGSR are few, many researchers have already used 

artificial intelligence to predict GSR. Some applied combined AI methods and empirical 

models, others presented studies comparing them (GAIRAA et al., 2016).  

Shboul et al. (2021), used an ANN to predict HGSR and wind speed. The model was 

composed of two Feed-forward Back-propagation Artificial Neural Network (FBANN). The 

first received monthly, daily and hourly data inputs and generated the values used in the 

second model, which forecasts HGSR and wind speed.  

Siva Krishna Rao et al. (2018) developed and compared the results of six ANN 

architectures using Back-propagation learning algorithm for predicting monthly-mean daily 

GSR. Gairaa et al. (2016) proposed a combined model approach using a linear 

autoregressive moving average (ARMA) model and a nonlinear Artificial Neural Network 

(ANN) model to estimate daily GSR. One of the main motivations for creating the hybrid 
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model was that ARMA produces more accurate results on sunny days, while ANN responds 

better on cloudy days, according to the literature. 

Antonopoulos et al. (2019) developed a comparative study between the application of 

the Hargraeves method, technology and multi-linear regression methods (MLR) and ANN to 

predict GSR. These researchers obtained similar results for the methods applied and, 

therefore, they concluded that the complexity in implementing the ANN and the insignificant 

gain in accuracy do not justify its implementation, in their specific case.  

Fan et al. (2017) conducted a study to predict daily global solar radiation using 20 

empirical models. Ten simple models were used based on temperature data, including the 

model proposed by Hargreave & Samani (1985). The remaining (complex) models use 

parameters other than temperature data, such as relative humidity, precipitation, and vapor 

pressure deficit, because according to Quej et al. (2016), in humid regions, temperature 

variation correlates with these meteorological variables. The average values obtained by 

Fan et al. (2017) for R² in the simple models was 0.65 and in the complex models, 0.75. 

Feng et al. (2019) used four empirical models to predict daily global solar radiation, 

and the results for R² ranged from 0.827 to 0.829. The authors also used artificial neural 

networks in the study. It is important to note that the studies did not address hourly global 

radiation, which demonstrates the contribution of this work. As reported in the initial section, 

research focused on forecasting hourly solar radiation is scarce. Although the unit is distinct, 

which implies a change in methodology and increases the complexity of the method, it is 

possible to conclude that the model proposed in this work is promising. 

Studies using artificial neural networks, such as that by Feng et al. (2019), have also 

been developed for forecasting daily global solar radiation, reinforcing the finding that there 

is a methodological gap that this study can contribute to filling. 

3. DATA PROCESSING AND NORMALIZATION 

Before applying the model, it is necessary to make some corrections and adjustments, 

such as removing gaps in monitoring, sorting and removing data that is not relevant to the 

modeling (null cells, for example) and other anomalies that can interfere with the results, 

such as outliers. Alanazi et al. (2016) warns that if the variables have different units and 

scales, it is recommended that a data normalization process be employed. After 

normalization, the ANN input values present minimum and maximum values, usually a 

dimensionless scale from 0 to 1, which facilitates the application of the algorithm and 
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improves the accuracy of the model (ALANAZI et al., 2016; SINGH et al., 2015). Shi et al. 

(2021) emphasize that normalization tends to maintain the proportionality between the 

values of the data set, thereby increasing the accuracy of the model. 

For data normalization, the methodology adopted was developed in a manner 

analogous to the Hargreaves-Samani model, Eq. (1), which uses daily data on temperature 

and solar radiation incident at the top of the atmosphere to estimate global daily radiation. 

However, the objective was to use the hourly data so that it is possible to estimate the hourly 

global radiation. 

Rs = Krs (Tmax – Tmin) ² Ra                                                                                                   (1) 

where Rs is the incident solar radiation (MJ / (m² day)); Krs the empirical coefficient 

(dimensionless); Tmax is the maximum air temperature (ºC); Tmin the minimum air 

temperature(ºC); Ra is the solar radiation incident at the top of the (MJ / (m² day)). 

To develop the HGSR model some mathematical procedures must be performed. The 

daily temperature amplitude (Aterm) and the hourly temperature difference (DTh), Eq. (2), 

were calculated. Some tests were carried out with the aim of observing the relationship 

between these new variables and the hourly global solar radiation. 

DTh = Tah – Tbh                                                                                                                 (2) 

where Tah is the hourly air temperature (°C); and Tbh is the base temperature (°C), 

according to Eq. (3), 
 
where, 
 
if, 0 < H < Hsr             Tbh = Tah 

if, Hss < H < 24          Tbh = Tah                                                                                                            (3) 

if, Hsr < H < Hss          Tbh = Tah +  
(Tass−Tasr) x (H−Hsr)

(Hss−Hsr)
 

where, Tbh is the base temperature (°C). 

Tass is the air temperature at sunset (°C). 

Tasr is the air temperature at sunrise (°C). 

The H is the measurement time. 
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According to the proposed model, Tbh will only to be different from the hourly air 

temperature when H is between sunrise time (Hsr) and the time of sunset (Hss). 

The Aterm is defined as the difference between the maximum temperatures (Tmax) and 

minimal (Tmin) daily, as presented next. 

Aterm = Tmax – Tmin                                                                                                         (4) 

As recommended by Alanazi et al. (2016), to define the normalized input variables, 

temperature data related to temperature amplitude (Aterm), and the hourly temperature 

difference were used. For the radiation, the solar radiation incident at the top of the 

atmosphere at noon (Ra) was used.  Furthermore, tests were carried out during the process 

and, empirically, the equations for the final procedure for normalizing the variables were 

defined. The objective of applying these equations is to facilitate the use of data by the ANN 

and improve the performance of the predictions. Therefore, for the normalization of radiation 

data, the following equations are used: 

Ranorm = √Ra0,1                                                                                   (5) 

                                                                                                                                                                                                                                     

RT = √(
DTh

Aterm
)

0,4

                                                                                                        (6) 

   

HGSRnorm = √HGSR0,4                                                                                                 (7) 

where HGSRnorm is the normalized hourly global radiation; HGSR is the hourly global 

radiation; RT is the standardization of the relationship between thermal amplitude and air 

temperature; DTh is the difference between air temperature (Ta) and base temperature (Tb); 

Aterm is the temperature range, the difference between the daily maximum (Tmax) and 

minimum (Tmin) temperatures. 

The independent variables adopted were Ranorm and RT, and the dependent variable 

is the HGSR norm and, from these parameters, it is possible to construct an ANN and evaluate 

its ability to estimate the global hourly radiation. 

 
4. MODEL EVALUATION METRICS 
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To evaluate the model’s performance, three criteria were adopted: the Mean Squared 

Error (MSE) and the Mean Absolute Error (MAE) and the R² (R-squared), which are 

expressed by, respectively, 

MSE =
1

n
 ∑ (yi − ŷi)2n

i=1                   (best value = 0; worst value = +∞)                                            (8)                                                                                                                                                                                                        

 

MAE =
1

n
 ∑ |yi − ŷi| n

i=1                (best value = 0; worst value = + ∞)                                         (9) 

                                                                                           

R2 = 1 −
∑(y𝑖− ŷi)2

(∑(yi− y)²
                           (worst value =0; best value = +1)                                (10) 

where ŷi is the predicted output value; yi is the target value; n is the number of observations 

and y is the mean of target values. 

5. UTILIZED DATA 

The data used were obtained from the database of the automatic station of the National 

Institute of Meteorology - INMET of Campos dos Goytacazes, Rio de Janeiro State, Brazil, 

located at coordinates 41.35°W Longitude and 21.71°S Latitude. The monitoring covers the 

period from 2011 to 2021 for the parameters Global Radiation (KJ/m²), hourly dry bulb air 

temperature (°C), dew point temperature (°C), maximum temperature in the previous hour 

(°C), minimum temperature in the previous hour (°C), maximum dew temperature in the 

previous hour (°C), minimum dew temperature in the previous hour (°C) and the time of 

measurement. 

6. DEVELOPMENT OF THE ARTIFICIAL NEURAL NETWORK 
 
The Artificial Neural Network (ANN) is a simplification of brain structure, where neurons 

are represented by nodes and synapses by weighted links. ANNs have, at least, two layers: 

one input layer and one output layer. In addition to these, the network can have intermediate 

layers, called hidden layers (HAYKIN, 2001).  Also, according to Haykin (2001), the first 

layer receives the input data from the model and the number of neurons is linked to the 

number of independent variables or parameters adopted. The inner layers, or hidden layers, 

are where the data is processed. To define the number of neurons in the hidden layer, there 

are different approaches. Silva (2005) proposed a technique for defining the number of 

neurons in the hidden layer based on Kolmorogov's Theorem, which correlates the number 

of neurons in the hidden layer (Nhidden) with the number of inputs (Ninputs), as presented next. 
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Nhidden = 2 Ninputs                                                                                                                 (11) 

Haykin (2001) states that the output layer can has as many outputs as there are 

dependent variables in the model. On the other hand, the number of hidden layers can be 

defined randomly, depending on the topology adopted in the ANN and tests, basically 

consisting of trial and error, to adjust the model. 

In the model proposed in this work, initially, both approaches were used. First, the 

methodology proposed by Silva (2005) was adopted to define the number of neurons in the 

hidden layers. Subsequently, configuration tests were carried out in a manner analogous to 

the approach suggested by Haykin (2001) for the definition of hidden layers. Finally, to 

define the optimal architecture, tests were performed with different parameter configurations 

and their respective performances were evaluated. The parameters used in the tests to 

define the final ANN structure were number of neurons in the hidden layer, different training 

dataset ratios, learning rates and training algorithms. To perform the comparative tests, fixed 

parameters were defined, while other parameters were changed in each version. The default 

configuration was 6 neurons in the hidden layers (Nhidden), 20% of samples were segregated 

for testing, a learning rate of 0.001, and the Adam algorithm was chosen as the optimization 

algorithm. Adam algorithm is a Stochastic Gradient Descent method proposed by Kingma & 

Ba (2014). 

7. RESULTS 
 

7.1 Defining the number of neurons in the hidden layers 

To define the number of neurons in the hidden layers, a comparative analysis of 

different compositions was performed. The number of neurons used in the performance 

analysis varied from 6 to 14. As shown in Table 1, the performance of the ANN composed 

of 12 neurons in each hidden layer, evaluated through MSE, MAE and R², presented the 

best results, except for MSE Testing and, therefore, it was used in the final ANN. 

Dataset 
Statistical 
parameter 

Number of Neurons 

6 8 10 12 14 

Training MSE 0.0102 0.0099 0.0099 0.0095 0.0096 

Testing MSE 0.0091 0.0098 0.0093 0.0092 0.0094 

Training MAE 0.0779 0.0765 0.0766 0.0749 0.0755 

Testing MAE 0.0716 0.0733 0.0718 0.0711 0.0718 
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Table1.  Performance with different numbers of neurons in the hidden layer. 

 

 

7.2   Defining training dataset size 

The performance evaluation of different dataset sizes was investigated and presented 

in Table 2. Test compositions of 20%, 30%, 40% and 50% were tested. The results for MSE 

Training datasets of 10%, 20% and 30% were similar (0.0095, 0.0094 and 0.0095, 

respectively). Training and testing datasets of 20% also presented slightly better results than 

the others. However, the Testing dataset of 30% presented the best result for R² (0.8016) 

and better performance in the other comparisons. Therefore, the percentage of the testing 

dataset adopted in the final ANN was composed of 30% of the data for training and 70% for 

testing. 

Table 2. Performance with different training data set ratios. 

 

7.3 Definition of initial learning rate 

The results obtained by the model did not show variations for R² (0.8016 and 0.7997 

for training and testing, respectively). However, learning rates of 0.001 and 0.003 produced 

very close results and were slightly better than the other rates tested, as shown in Table 3. 

Therefore, the learning rate chosen to be used in the final ANN was 0.001. 

Table 3. Performance with different initial learning rates. 

Training R² 0.8016 0.8016 0.8016 0.7997 0.7997 

Testing R² 0.7997 0.7997 0.7997 0.8016 0.8016 

Dataset Statistical parameter 
Percentage of testing datasets 

10 20 30 40 50 

Training MSE 0.0095 0.0094 0.0095 0.0099 0.0096 

Testing MSE 0.0106 0.0106 0.0092 0.0092 0.0098 

Training MAE 0.0751 0.0744 0.0749 0.0761 0.0749 

Testing MAE 0.0752 0.0757 0.0711 0.0721 0.0739 

Training R² 0.7996 0.8038 0.7997 0.7974 0.8032 

Testing R² 0.8020 0.7949 0.8016 0.8004 0.7946 

Dataset Statistical parameter 
Initial learning rate 

0.001 0.003 0.005 0.010 0.015 

Training MSE 0.0095 0.0096 0.0097 0.0096 0.0096 

Testing MSE 0.0092 0.0088 0.0088 0.0089 0.0092 

Training MAE 0.0749 0.0753 0.0756 0.0752 0.0753 

Testing MAE 0.0711 0.0710 0.0710 0.0707 0.0714 

Training R² 0.8016 0.8016 0.8016 0.8016 0.8016 

Testing R² 0.7997 0.7997 0.7997 0.7997 0.7997 
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7.4 Optimization algorithms 

Four optimization algorithms were tested, including Adam, Stochastic Gradient 

Descent (SGD), Adagrad and Root Mean Square Propagation (RMSprop). According to 

Dogo et al. (2018), these algorithms are among the most widely used in deep learning 

nowaday. That's why they were chosen for performance testing. Among them, the one that 

performed best was Adam, which despite presenting R² equal to the other algorithms, 

returned better results in the error evaluation metrics MSE and MAE (Table 4).  

Therefore, as an optimizer, Adam was applied. This is a gradient based stochastic 

optimization method, widely used in ANNs, in several areas of research, and is considered 

an update of other algorithms that use Gradient Descent (KINGMA & BA, 2014). 

Furthermore, if necessary, Adam updates the parameters of the learning model and its 

application aims to minimize the cost function in the machine learning process. 

Table 4. Performance with different training algorithms. 

Dataset Statistical 
parameter 

Optmization algorithm 

Adam SGD Adagrad RMSprop 

Training MSE 0.0095 0.0506 0.0511 0.0101 

Testing MSE 0.0092 0.0488  0.0488 0.0094 

Training MAE 0.0749 0.1796 0.1806 0.0773 

Testing MAE 0.0711 0.1719 0.1722 0.0720 

Training R² 0.8016 0.8016 0.8016 0.8016 

Testing R² 0.7997 0.7997 0.7997 0.7997 

 

7.5 Optimal neural network 

Finaly, the architecture that showed the best results combined was a multilayer ANN 

or MLP (Multilayer Perceptron), densely connected, where every neuron is connected to the 

previous layer, composed of the inputs of the model, five hidden layers, composed of 12 

neurons each and an output layer (Figure 1), learning rate 0.001, with a 70/30 ratio for 

training and testing data, and Adam as optimization algorithm. 

 

Figure 1. Structure of the developed ANN. 
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In the hidden layers, a hyperbolic tangent sigmoid activation function was used, with a 

linear activation function applied at the output layer. The sigmoid is a non-linear activation 

function, which allows the model to achieve greater generalization and adaptability. Its 

output is comprised of the interval from 0 to 1 (SHARMA, 2023). In Szandała (2021), it’s 

highlighted that the linear activation function is the most basic, being employed in the output 

layer, since it does not alter the output of a neuron, it only transmits the result.  

8. DISCUSSION 

After normalization of RT and Ra, and the dependent variable (target variable) HGSR, 

besides splitting the data in two sets, one for training and the other for testing and validation 

as defined by the methodology for building an optimal model. The total sample size was 

46,216 divided into a ratio of 70% for training and 30% for model testing as defined in the 

previous section. The training batches (batch size) were of the order of 32.   

In addition, the Dropout data regularization technique was implemented, the purpose 

of which is to avoid overfitting, which consists of removing the weights, in some neurons, 

randomly, in a percentage that can be defined from 0 to 1 (BADOLA et al., 2020). Some 

values were tested and the one that returned the best result was 0.2, that is, the weights 

were removed in 20% of the neurons in the hidden layer in which the dropout was applied. 

As shown in Figure 2, the model was used with 50 epochs, as it presented stability in 

a relatively short period, denoting the good fit between the predictions from training to the 

test for the MSE and MAE performance evaluation metrics. The cost function presented very 

satisfactory results, being 0.0092 for the MSE, while the MAE was 0.0711 for testing error. 

  

                  Figure 2. Graph of the MSE and MAE against training and testing epochs. 

The training presented good alignment with the test data, indicating that the partitioning 

of the lots was adequate and that the algorithm was successful in the predictions in both 

procedures. 
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The mean for the MSE testing was 0.0101, while the standard deviation was 0.053 and 

0.0188 for the MAE Testing. Table 5 shows the statistical data related to the error of the 

forecasts both for training and testing. 

 

Table 5. MSE and MAE obtained with the ANN. 

 
In addition to the metrics applied to evaluate the ANN performance, a graphical 

comparison was made between the first 150 HGSR measurements obtained at the 

stationary stations and the predictions made by the model. The samples used were from the 

daytime period, which is why they presented values above zero. In Figure 3, it is possible to 

infer that the predictions follow the trend of the historical data, corroborating the results 

obtained by the model performance evaluation metrics. In addition, the statistics of the 

results obtained presented in Table 6 confirm that the model prediction returned data very 

close to the historical measurements.  

Considering that the data were normalized for modeling, as described in Section 4, 

and that the values for the output layer, after standardization, varied between 0.1584 and 

1.3403, the average difference between the absolute values of the differences between the 

real values and those obtained by the model, MAE, was 0.0780. Therefore, confirming the 

accuracy of the model. 

However, MAE is less sensitive to outliers. On the other hand, MSE is a metric used 

to calculate the mean of the squares of the differences between the values predicted in the 

modeling and the values originally observed and it has the ability to amplify errors (CHAO 

et al., 2022). Therefore, the two metrics complement each other in the analysis. The 

predictions made by the ANN were adequate to the level of accuracy required, since the 

lower the MAE and MSE, the more accurate the model's predictions are CHAO et al. (2022). 

In any case, the suggested model must be improved and new studies must be carried 

out with the aim of minimizing errors, increasing reliability and expanding the applicability of 

Statistics MSE Training MSE Testing MAE Training MAE Testing 

Mean 0.0119   0.0101    0.0824   0.0745   

Standard deviation 0.0078   0.0053    0.0188    0.0138   

Minimal 0.0097    0.0086    0.0758    0.0703    

25% 0.0098   0.0090   0.0764    0.0714   

50% 0.0101    0.0093    0.0775    0.0719   

75% 0.0107    0.0095    0.0801    0.0731   

Maximum 0.0603    0.0468    0.1922    0.1695   
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results in other regions, in accordance with the proposal to fill the knowledge gap regarding 

data availability from HSRG. 

 

Figure 3. Historical and predicted HGSR by the model for 150 initial samples. 
 

As shown in Table 6, with the exception of the value generated for the minimum data 

predicted by the ANN, the statistical analysis of the results reveals that the model performs 

satisfactorily, which was also corroborated by the performance evaluation metrics MSE, 

MAE and R². 

The results obtained for the ANN output layer (target variable) were analyzed by means 

of linear regression, with the aim of verifying the fit of the regression line obtained by the 

model and the real output data. Linear regression was therefore applied to the total samples 

for Rad (Figure 4) and the results confirmed the good relationship between the regression 

line established by the model and the data, with R² being 0.8016 for training and 0.7997 for 

testing. 

Table 6. Statistics of model results and real data. 

 

Statistics Historical HGSR Predicted HGSR 

Mean 1.0099 1.0178 

Standard deviation 0.2238 0.2006 

Minimal 0.1584 0.3998 

25% 0.8821 0.9182 

50% 1.0642 1.0885 

75% 1.1838 1.1761 

Maximum 1.3403 1.2353 
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                  Figure 4. Linear regression for observed HGSR and model predicted HGSR. 

9. CONCLUSIONS 

Based on the results obtained, it is possible to infer that a densely connected MLP-

type ANN is able to predict hourly solar radiation. The contribution may be important, since 

it would be possible to fill gaps in incomplete historical series or to implement the model in 

places where there is no history of measurement of global hourly radiation.  

Despite the satisfactory results obtained in this study, it is important to emphasize that 

the implemented algorithm is relatively simple and can be adjusted and improved by adding 

techniques that allow an increase in performance and precision. Whether by reducing 

oscillations in forecast errors or by adjusting synaptic weights, back-propagation techniques, 

among others. In addition, other ANN architectures associated with different performance 

evaluation methods can be employed. Therefore, further studies should be carried out to 

improve the model. 

Furthermore, it is important to consider that the model was developed using data from 

a single monitoring station and, consequently, implicitly considers local geographic and 

climatological aspects. Therefore, for the model to be applied more broadly, adjustments 
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and expansion of the database from different monitoring stations with diverse geographic 

and climatological features should be considered. 

The next step in this work, therefore, is to use data from different locations and make 

the necessary adjustments to build a generalist version when it can be made available and 

shared in a public repository. 
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